河南省南陽市方城縣重點達標名校2024屆中考數學仿真試卷含解析_第1頁
河南省南陽市方城縣重點達標名校2024屆中考數學仿真試卷含解析_第2頁
河南省南陽市方城縣重點達標名校2024屆中考數學仿真試卷含解析_第3頁
河南省南陽市方城縣重點達標名校2024屆中考數學仿真試卷含解析_第4頁
河南省南陽市方城縣重點達標名校2024屆中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省南陽市方城縣重點達標名校2024屆中考數學仿真試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.42.一組數據:1、2、2、3,若添加一個數據2,則發生變化的統計量是A.平均數 B.中位數 C.眾數 D.方差3.單項式2a3b的次數是()A.2 B.3 C.4 D.54.在數軸上表示不等式組的解集,正確的是()A. B.C. D.5.某經銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊6.一次函數與二次函數在同一平面直角坐標系中的圖像可能是()A. B. C. D.7.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°8.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=39.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.310.中國幅員遼闊,陸地面積約為960萬平方公里,“960萬”用科學記數法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×102二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.12.拋物線y=(x+1)2-2的頂點坐標是______.13.一組數據:1,2,a,4,5的平均數為3,則a=_____.14.某航空公司規定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數圖象確定,則旅客可攜帶的免費行李的最大質量為kg15.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區域的概率是_____________________.16.__.17.拋物線y=x2﹣2x+m與x軸只有一個交點,則m的值為_____.三、解答題(共7小題,滿分69分)18.(10分)為弘揚中華傳統文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.19.(5分)如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=1.點D為y軸上一點,其坐標為(0,2),點P從點A出發以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.(1)當點P經過點C時,求直線DP的函數解析式;(2)如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.20.(8分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.21.(10分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?22.(10分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.23.(12分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;(2)聯結PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯結PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.24.(14分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統計圖,請根據圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統計圖;(3)求圖1中甲班所對應的扇形圓心角的度數;(4)若四個班級的學生總數是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

設BN=x,則由折疊的性質可得DN=AN=9-x,根據中點的定義可得BD=3,在Rt△BND中,根據勾股定理可得關于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質,得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質,勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質及勾股定理是解答本題的關鍵.2、D【解析】

解:A.原來數據的平均數是2,添加數字2后平均數仍為2,故A與要求不符;B.原來數據的中位數是2,添加數字2后中位數仍為2,故B與要求不符;C.原來數據的眾數是2,添加數字2后眾數仍為2,故C與要求不符;D.原來數據的方差==,添加數字2后的方差==,故方差發生了變化.故選D.3、C【解析】分析:根據單項式的性質即可求出答案.詳解:該單項式的次數為:3+1=4故選C.點睛:本題考查單項式的次數定義,解題的關鍵是熟練運用單項式的次數定義,本題屬于基礎題型.4、C【解析】

解不等式組,再將解集在數軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.5、C【解析】試題分析:根據題意設出未知數,列出相應的不等式,從而可以解答本題.設這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點:一元一次不等式的應用6、D【解析】

本題可先由一次函數y=ax+c圖象得到字母系數的正負,再與二次函數y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數y=ax+c與y軸交點應為(0,c),二次函數y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質,用假設法來搞定這種數形結合題是一種很好的方法.7、C【解析】

這個扇形的圓心角的度數為n°,根據弧長公式得到20π=,然后解方程即可.【詳解】解:設這個扇形的圓心角的度數為n°,根據題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數,R為扇形所在圓的半徑).8、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,經檢驗x=﹣3是分式方程的解.故選B.9、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質、等邊三角形的判定與性質、等腰三角形的性質、直角三角形的性質以及三角函數等知識,準確添加輔助線,掌握折疊前后圖形的對應關系是解題的關鍵.10、B【解析】試題分析:“960萬”用科學記數法表示為9.6×106,故選B.考點:科學記數法—表示較大的數.二、填空題(共7小題,每小題3分,滿分21分)11、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.12、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.13、1【解析】依題意有:(1+2+a+4+5)÷5=1,解得a=1.故答案為1.14、20【解析】設函數表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg15、2【解析】試題分析:根據題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區域的可能有4種,因此可求得小球停留在黑色區域的概率為:41816、.【解析】

根據去括號法則和合并同類二次根式法則計算即可.【詳解】解:原式故答案為:【點睛】此題考查的是二次根式的加減運算,掌握去括號法則和合并同類二次根式法則是解決此題的關鍵.17、1【解析】

由拋物線y=x2-2x+m與x軸只有一個交點可知,對應的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個交點,∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點睛】本題考查了拋物線與x軸的交點問題,注:①拋物線與x軸有兩個交點,則△>2;②拋物線與x軸無交點,則△<2;③拋物線與x軸有一個交點,則△=2.三、解答題(共7小題,滿分69分)18、(1);(2).【解析】

(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數,再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數,然后根據概率公式求解.【詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數,其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.19、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點P的坐標是(,1);(3)存在,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)設直線DP解析式為y=kx+b,將D與B坐標代入求出k與b的值,即可確定出解析式;

(2)①當P在AC段時,三角形ODP底OD與高為固定值,求出此時面積;當P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關系式;

②設P(m,1),則PB=PB′=m,根據勾股定理求出m的值,求出此時P坐標即可;

(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標性質求出P坐標即可.詳解:(1)如圖1,∵OA=6,OB=1,四邊形OACB為長方形,∴C(6,1).設此時直線DP解析式為y=kx+b,把(0,2),C(6,1)分別代入,得,解得則此時直線DP解析式為y=x+2;(2)①當點P在線段AC上時,OD=2,高為6,S=6;當點P在線段BC上時,OD=2,高為6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②設P(m,1),則PB=PB′=m,如圖2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=則此時點P的坐標是(,1);(3)存在,理由為:若△BDP為等腰三角形,分三種情況考慮:如圖3,①當BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根據勾股定理得:CP1==2,∴AP1=1﹣2,即P1(6,1﹣2);②當BP2=DP2時,此時P2(6,6);③當DB=DP3=8時,在Rt△DEP3中,DE=6,根據勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),綜上,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).點睛:此題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,坐標與圖形性質,等腰三角形的性質,勾股定理,利用了分類討論的思想,熟練掌握待定系數法是解本題第一問的關鍵.20、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】

(1)根據題意和矩形的周長公式列出代數式解答即可.(2)根據題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.【點睛】本題考查了矩形的周長與面積、列代數式問題、平方差公式等,解題的關鍵是根據題意和矩形的性質列出代數式解答.21、(1)當,時有最大值1;(2)當時,面積有最大值32.【解析】

(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.

(2)設BD=x,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構建二次函數,利用二次函數的性質即可解決問題.【詳解】(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,

最大面積為×6×(16-6)=1.故當,時有最大值1;(2)當,時有最大值,設,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數的應用等知識,解題的關鍵是學會利用參數構建二次函數解決問題.22、見解析【解析】

由菱形的性質可得,,然后根據角角邊判定,進而得到.【詳解】證明:∵菱形ABCD,∴,,∵,,∴,在與中,,∴,∴.【點睛】本題考查菱形的性質和全等三角形的判定與性質,根據菱形的性質得到全等條件是解題的關鍵.23、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點,P為AC的中點,所以點E是△ABC的重心,然后求得BE的長.(2)過點B作BF∥CA交CD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PD⊥AB,D是邊AB的中點,在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點,AC=8,∴CP=4,∵∠ACB=9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論