河南省鄭州市鄭州一中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第1頁
河南省鄭州市鄭州一中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第2頁
河南省鄭州市鄭州一中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第3頁
河南省鄭州市鄭州一中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第4頁
河南省鄭州市鄭州一中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省鄭州市鄭州一中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一位媽媽記錄了孩子6至9歲的身高(單位:cm),所得數(shù)據(jù)如下表:年齡(歲)6789身高(cm)118126136144由散點圖可知,身高與年齡之間的線性回歸方程為,預(yù)測該孩子10歲時的身高為A.154 B.153 C.152 D.1512.已知等比數(shù)列中,各項都是正數(shù),且成等差數(shù)列,則等于()A. B. C. D.3.如圖,某人在點處測得某塔在南偏西的方向上,塔頂仰角為,此人沿正南方向前進30米到達處,測得塔頂?shù)难鼋菫椋瑒t塔高為()A.20米 B.15米 C.12米 D.10米4.若曲線表示橢圓,則的取值范圍是()A. B. C. D.或5.已知直線與互相垂直,垂足坐標為,且,則的最小值為()A.1 B.4 C.8 D.96.三角函數(shù)是刻畫客觀世界周期性變化規(guī)律的數(shù)學(xué)模型,單位圓定義法是任意角的三角函數(shù)常用的定義方法,是以角度(數(shù)學(xué)上最常用弧度制)為自變量,任意角的終邊與單位圓交點坐標為因變量的函數(shù).平面直角坐標系中的單位圓指的是平面直角坐標系上,以原點為圓心,半徑為單位長度的圓.問題:已知角的終邊與單位圓的交點為,則()A. B. C. D.7.在△ABC中角ABC的對邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.8.若函數(shù)的圖象上所有點縱坐標不變,橫坐標伸長到原來的2倍,再向左平行移動個單位長度得函數(shù)的圖象,則函數(shù)在區(qū)間內(nèi)的所有零點之和為()A. B. C. D.9.已知向量,,則與夾角的大小為()A. B. C. D.10.已知等差數(shù)列中,若,則取最小值時的()A.9 B.8 C.7 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調(diào)遞增區(qū)間為______.12.已知單位向量與的夾角為,且,向量與的夾角為,則=.13.已知向量,滿足,與的夾角為,則在上的投影是;14.已知函數(shù),的最小正周期是___________.15.已知實數(shù)滿足則的最小值為__________.16.?dāng)?shù)列中,,,,則的前2018項和為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,(1)求;(2)求;(3)求18.已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.(1)求函數(shù)的解析式;(2)在中,角、、所對的邊分別為、、,且,,若角滿足,求的取值范圍;(3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應(yīng)的函數(shù)記作,已知常數(shù),,且函數(shù)在內(nèi)恰有個零點,求常數(shù)與的值.19.?dāng)?shù)列中,,,數(shù)列滿足.(1)求數(shù)列中的前四項;(2)求證:數(shù)列是等差數(shù)列;(3)若,試判斷數(shù)列是否有最小項,若有最小項,求出最小項.20.已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)當(dāng)時,證明不等式:.21.已知的頂點,邊上的中線所在直線方程為,的平分線所在直線方程為,求:(Ⅰ)頂點的坐標;(Ⅱ)直線的方程

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:根據(jù)題意,由表格可知,身高y與年齡x之間的線性回歸直線方程為,那么可知回歸方程必定過樣本中心點,即為(7,131)代入可知,=65,預(yù)測該學(xué)生10歲時的身高,將x=10代入方程中,即可知為153,故可知答案為B考點:線性回歸直線方程點評:主要是考查了線性回歸直線方程的回歸系數(shù)的運用,屬于基礎(chǔ)題.2、C【解析】

由條件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求運算求得結(jié)果.【詳解】∵等比數(shù)列{an}中,各項都是正數(shù),且a1,a3,2a2成等差數(shù)列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故選:C.【點睛】本題主要考查等差中項的性質(zhì),等比數(shù)列的通項公式,考查了整體化的運算技巧,屬于基礎(chǔ)題.3、B【解析】

設(shè)塔底為,塔高為,根據(jù)已知條件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【詳解】設(shè)塔底為,塔高為,故,由于,所以在三角形中,由余弦定理得,解得米.故選B.【點睛】本小題主要考查利用余弦定理解三角形,考查空間想象能力,屬于基礎(chǔ)題.4、D【解析】

根據(jù)橢圓標準方程可得,解不等式組可得結(jié)果.【詳解】曲線表示橢圓,,解得,且,的取值范圍是或,故選D.【點睛】本題主要考查橢圓的標準方程以及不等式的解法,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于簡單題.5、B【解析】

代入垂足坐標,可得,然后根據(jù)基本不等式,可得結(jié)果.【詳解】由兩條直線的交點坐標為所以代入可得,即又,所以即當(dāng)且僅當(dāng),即時,取等號故選:B【點睛】本題主要考查基本不等式,屬基礎(chǔ)題.6、A【解析】

先求出和的值,再根據(jù)誘導(dǎo)公式即可得解.【詳解】因為角的終邊與單位圓的交點為,所以,,則.故選:A.【點睛】本題考查任意角三角函數(shù)值的求法,考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題,7、D【解析】

首先利用同角三角函數(shù)的關(guān)系式求出sinC的值,進一步利用余弦定理和三角形的面積公式及基本不等式的應(yīng)用求出結(jié)果.【詳解】△ABC中角ABC的對邊分別為a、b、c,cosC,利用同角三角函數(shù)的關(guān)系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,基本不等式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于中檔題.8、C【解析】

先由誘導(dǎo)公式以及兩角和差公式得到函數(shù)表達式,再根據(jù)函數(shù)伸縮平移得到,將函數(shù)零點問題轉(zhuǎn)化為圖像交點問題,進而得到結(jié)果.【詳解】函數(shù)橫坐標伸長到原來的2倍得到,再向左平行移動個單位長度得函數(shù),函數(shù)在區(qū)間內(nèi)的所有零點,即的所有零點之和,畫出函數(shù)和函數(shù)的圖像,有6個交點,故得到根之和為.故答案為:C.【點睛】本題考查了三角函數(shù)的化簡問題,以及函數(shù)零點問題。于函數(shù)的零點問題,它和方程的根的問題,和兩個函數(shù)的交點問題是同一個問題,可以互相轉(zhuǎn)化;在轉(zhuǎn)化為兩個函數(shù)交點時,如果是一個常函數(shù)一個非常函數(shù),注意讓非常函數(shù)式子盡量簡單一些。9、D【解析】

根據(jù)向量,的坐標及向量夾角公式,即可求出,從而根據(jù)向量夾角的范圍即可求出夾角.【詳解】向量,,則;∴;∵0≤<a,b>≤π;∴<a,b>=.故選:D.【點睛】本題考查數(shù)量積表示兩個向量的夾角,已知向量坐標代入夾角公式即可求解,屬于常考題型,屬于簡單題.10、C【解析】

是等差數(shù)列,先根據(jù)已知求出首項和公差,再表示出,由的最小值確定n。【詳解】由題得,,解得,那么,當(dāng)n=7時,取到最小值-49.故選:C【點睛】本題考查等差數(shù)列前n項和,是基礎(chǔ)題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

令,解得的范圍即為所求的單調(diào)區(qū)間.【詳解】令,,解得:,的單調(diào)遞增區(qū)間為故答案為:【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解問題,關(guān)鍵是能夠采用整體對應(yīng)的方式,結(jié)合正弦函數(shù)的單調(diào)區(qū)間來進行求解.12、【解析】試題分析:因為所以考點:向量數(shù)量積及夾角13、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值14、【解析】

先化簡函數(shù)f(x),再利用三角函數(shù)的周期公式求解.【詳解】由題得,所以函數(shù)的最小正周期為.故答案為【點睛】本題主要考查和角的正切和正切函數(shù)的周期的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.15、【解析】

本題首先可以根據(jù)題意繪出不等式組表示的平面區(qū)域,然后結(jié)合目標函數(shù)的幾何性質(zhì),找出目標函數(shù)取最小值所過的點,即可得出結(jié)果。【詳解】繪制不等式組表示的平面區(qū)域如圖陰影部分所示,結(jié)合目標函數(shù)的幾何意義可知,目標函數(shù)在點處取得最小值,即。【點睛】本題考查根據(jù)不等式組表示的平面區(qū)域來求目標函數(shù)的最值,能否繪出不等式組表示的平面區(qū)域是解決本題的關(guān)鍵,考查數(shù)形結(jié)合思想,是簡單題。16、2【解析】

直接利用遞推關(guān)系式和數(shù)列的周期求出結(jié)果即可.【詳解】數(shù)列{an}中,a1=1,a2=2,an+2=an+1﹣an,則:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:數(shù)列的周期為1.a(chǎn)1+a2+a2+a4+a5+a1=0,數(shù)列{an}的前2018項和為:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案為:2【點睛】本題考查的知識要點:數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列的周期的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】

利用正弦的二倍角公式,余弦和正切的兩角和公式計算即可得到答案.【詳解】因為,,所以.(1);(2);(3)【點睛】本題考查正弦的二倍角公式,余弦和正切的兩角和公式的應(yīng)用,屬于簡單題.18、(1);(2);(3),.【解析】

(1)由函數(shù)的周期公式可求出的值,求出函數(shù)的對稱軸方程,結(jié)合直線為一條對稱軸結(jié)合的范圍可得出的值,于此得出函數(shù)的解析式;(2)由得出,再由結(jié)合銳角三角函數(shù)得出,利用正弦定理以及內(nèi)角和定理得出,由條件得出,于此可計算出的取值范圍;(3)令,得,換元得出,得出方程,設(shè)該方程的兩根為、,由韋達定理得出,分(ii)、;(ii),;(iii),三種情況討論,計算出關(guān)于的方程在一個周期區(qū)間上的實根個數(shù),結(jié)合已知條件得出與的值.【詳解】(1)由三角函數(shù)的周期公式可得,,令,得,由于直線為函數(shù)的一條對稱軸,所以,,得,由于,,則,因此,;(2),由三角形的內(nèi)角和定理得,.,且,,.,由,得,由銳角三角函數(shù)的定義得,,由正弦定理得,,,,且,,,.,因此,的取值范圍是;(3)將函數(shù)的圖象向右平移個單位,得到函數(shù),再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應(yīng)的函數(shù)為,,令,可得,令,得,,則關(guān)于的二次方程必有兩不等實根、,則,則、異號,(i)當(dāng)且時,則方程和在區(qū)間均有偶數(shù)個根,從而方程在也有偶數(shù)個根,不合乎題意;(ii)當(dāng),則,當(dāng)時,只有一根,有兩根,所以,關(guān)于的方程在上有三個根,由于,則方程在上有個根,由于方程在區(qū)間上只有一個根,在區(qū)間上無實解,方程在區(qū)間上無實數(shù)解,在區(qū)間上有兩個根,因此,關(guān)于的方程在區(qū)間上有個根,在區(qū)間上有個根,不合乎題意;(iii)當(dāng)時,則,當(dāng)時,只有一根,有兩根,所以,關(guān)于的方程在上有三個根,由于,則方程在上有個根,由于方程在區(qū)間上無實數(shù)根,在區(qū)間上只有一個實數(shù)根,方程在區(qū)間上有兩個實數(shù)解,在區(qū)間上無實數(shù)解,因此,關(guān)于的方程在區(qū)間上有個根,在區(qū)間上有個根,此時,,得.綜上所述:,.【點睛】本題考查利用三角函數(shù)的性質(zhì)求三角函數(shù)的解析式,以及三角形中的取值范圍問題,以及三角函數(shù)零點個數(shù)問題,同時也涉及了復(fù)合函數(shù)方程解的個數(shù)問題,考查分類討論思想的應(yīng)用,綜合性較強,屬于難題.19、(1),,,;(2)見解析;(3)有最小項,最小項是.【解析】

(1)由數(shù)列的遞推公式,可計算出數(shù)列的前四項,代入,即可計算出數(shù)列中的前四項;(2)利用數(shù)列的遞推公式計算出為常數(shù),結(jié)合等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列;(3)求出數(shù)列的通項公式,可求出,進而得出,利用作商法判斷數(shù)列的單調(diào)性,從而可求出數(shù)列的最小項.【詳解】(1)且,,,.,,,,;(2),而,,.因此,數(shù)列是首項為,公差為的等差數(shù)列;(3)由(2)得,則.,顯然,,當(dāng)時,,則;當(dāng)時,,則;當(dāng)時,,則;當(dāng)且時,,即.,,所以,數(shù)列有最小項,最小項是.【點睛】本題考查利用數(shù)列的遞推公式寫出前若干項,同時也考查了等差數(shù)列的證明以及數(shù)列最小項的求解,涉及數(shù)列單調(diào)性的證明,考查推理能力與計算能力,屬于中等題.20、(1);(2)見解析.【解析】

(1)分和兩種情況討論,利用,可得出數(shù)列的通項公式;(2)由得,從而可得,即可證明出結(jié)論.【詳解】(1),,.①當(dāng)時,數(shù)列是各項均為的常數(shù)列,則;②當(dāng)時,數(shù)列是以為首項,以為公比的等比數(shù)列,,.當(dāng)時,也適合.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論