2023-2024學(xué)年貴州省織金縣市級名校中考數(shù)學(xué)模擬試題含解析_第1頁
2023-2024學(xué)年貴州省織金縣市級名校中考數(shù)學(xué)模擬試題含解析_第2頁
2023-2024學(xué)年貴州省織金縣市級名校中考數(shù)學(xué)模擬試題含解析_第3頁
2023-2024學(xué)年貴州省織金縣市級名校中考數(shù)學(xué)模擬試題含解析_第4頁
2023-2024學(xué)年貴州省織金縣市級名校中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年貴州省織金縣市級名校中考數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在△ABC中,CD⊥AB于點(diǎn)D,E,F(xiàn)分別為AC,BC的中點(diǎn),AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.172.若關(guān)于x的不等式組只有5個(gè)整數(shù)解,則a的取值范圍()A. B. C. D.3.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.4.在數(shù)軸上到原點(diǎn)距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道5.長江經(jīng)濟(jì)帶覆蓋上海、江蘇、浙江、安徽、江西、湖北、湖南、重慶、四川、云南、貴州等11省市,面積約2050000平方公里,約占全國面積的21%.將2050000用科學(xué)記數(shù)法表示應(yīng)為()A.205萬 B. C. D.6.如圖,是的外接圓,已知,則的大小為A. B. C. D.7.已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P,若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤8.葉綠體是植物進(jìn)行光合作用的場所,葉綠體DNA最早發(fā)現(xiàn)于衣藻葉綠體,長約0.00005米.其中,0.00005用科學(xué)記數(shù)法表示為()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣39.如圖,將矩形ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°10.一、單選題如圖中的小正方形邊長都相等,若△MNP≌△MEQ,則點(diǎn)Q可能是圖中的()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D11.隨著我國綜合國力的提升,中華文化影響日益增強(qiáng),學(xué)中文的外國人越來越多,中文已成為美國居民的第二外語,美國常講中文的人口約有210萬,請將“210萬”用科學(xué)記數(shù)法表示為()A. B. C. D.12.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(diǎn)(不含端點(diǎn)B,C).若線段AD長為正整數(shù),則點(diǎn)D的個(gè)數(shù)共有()A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,中,∠,,的面積為,為邊上一動點(diǎn)(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.14.如圖,在4×4的方格紙中(共有16個(gè)小方格),每個(gè)小方格都是邊長為1的正方形.O、A、B分別是小正方形的頂點(diǎn),則扇形OAB周長等于_____.(結(jié)果保留根號及π).15.已知x1,x2是方程x2-3x-1=0的兩根,則=______.16.如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.17.請看楊輝三角(1),并觀察下列等式(2):根據(jù)前面各式的規(guī)律,則(a+b)6=.18.因式分解:x2﹣3x+(x﹣3)=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形的兩邊、的長分別為3、8,是的中點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),與交于點(diǎn).若點(diǎn)坐標(biāo)為,求的值及圖象經(jīng)過、兩點(diǎn)的一次函數(shù)的表達(dá)式;若,求反比例函數(shù)的表達(dá)式.20.(6分)規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.21.(6分)4件同型號的產(chǎn)品中,有1件不合格品和3件合格品.從這4件產(chǎn)品中隨機(jī)抽取1件進(jìn)行檢測,求抽到的是不合格品的概率;從這4件產(chǎn)品中隨機(jī)抽取2件進(jìn)行檢測,求抽到的都是合格品的概率;在這4件產(chǎn)品中加入x件合格品后,進(jìn)行如下試驗(yàn):隨機(jī)抽取1件進(jìn)行檢測,然后放回,多次重復(fù)這個(gè)試驗(yàn),通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?22.(8分)如圖,拋物線y=﹣+bx+c交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3),點(diǎn)D是x軸上一動點(diǎn),連接CD,將線段CD繞點(diǎn)D旋轉(zhuǎn)得到DE,過點(diǎn)E作直線l⊥x軸,垂足為H,過點(diǎn)C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到,求線段DF的長;(3)若線段DE是CD繞點(diǎn)D旋轉(zhuǎn)90°得到,且點(diǎn)E恰好在拋物線上,請求出點(diǎn)E的坐標(biāo).23.(8分)已知,,,斜邊,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點(diǎn),同時(shí)從點(diǎn)出發(fā),在邊上運(yùn)動,沿路徑勻速運(yùn)動,沿路徑勻速運(yùn)動,當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動停止,已知點(diǎn)的運(yùn)動速度為1.5單位秒,點(diǎn)的運(yùn)動速度為1單位秒,設(shè)運(yùn)動時(shí)間為秒,的面積為,求當(dāng)為何值時(shí)取得最大值?最大值為多少?24.(10分)桌面上放有4張卡片,正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.(1)請用列表或畫樹狀圖的方法求兩數(shù)和為5的概率;(2)若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為5時(shí),甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個(gè)游戲?qū)﹄p方公平?25.(10分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點(diǎn)A順時(shí)針旋轉(zhuǎn),把AC邊繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補(bǔ)三角形”,△AB'C′的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當(dāng)△ABC是任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并證明你的猜想;(拓展應(yīng)用)(3)如圖1.點(diǎn)A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且△APD是△BPC的“旋補(bǔ)三角形”,點(diǎn)P是“旋補(bǔ)中心”,請確定點(diǎn)P的位置(要求尺規(guī)作圖,不寫作法,保留作圖痕跡),并求BC的長.26.(12分)現(xiàn)有四張分別標(biāo)有數(shù)字1、2、2、3的卡片,他們除數(shù)字外完全相同.把卡片背面朝上洗勻,從中隨機(jī)抽出一張后放回,再背朝上洗勻,從中隨機(jī)抽出一張,則兩次抽出的卡片所標(biāo)數(shù)字不同的概率()A. B. C. D.27.(12分)如圖,網(wǎng)格的每個(gè)小正方形邊長均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).已知和的頂點(diǎn)都在格點(diǎn)上,線段的中點(diǎn)為.(1)以點(diǎn)為旋轉(zhuǎn)中心,分別畫出把順時(shí)針旋轉(zhuǎn),后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設(shè)的三邊,,,請證明勾股定理.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點(diǎn)D,E,F(xiàn)分別為AC,BC的中點(diǎn),∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點(diǎn)睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.2、A【解析】

分別解兩個(gè)不等式得到得x<20和x>3-2a,由于不等式組只有5個(gè)整數(shù)解,則不等式組的解集為3-2a<x<20,且整數(shù)解為15、16、17、18、19,得到14≤3-2a<15,然后再解關(guān)于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個(gè)整數(shù)解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點(diǎn)睛】本題主要考查對不等式的性質(zhì),解一元一次不等式,一元一次不等式組的整數(shù)解等知識點(diǎn)的理解和掌握,能求出不等式14≤3-2a<15是解此題的關(guān)鍵.3、B【解析】

根據(jù)網(wǎng)格的特點(diǎn)求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項(xiàng)B的各邊為1、、與它的各邊對應(yīng)成比例.故選B.【點(diǎn)晴】此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.4、C【解析】

根據(jù)數(shù)軸上到原點(diǎn)距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【詳解】絕對值為3的數(shù)有3,-3.故答案為C.【點(diǎn)睛】本題考查數(shù)軸上距離的意義,解題的關(guān)鍵是知道數(shù)軸上的點(diǎn)到原點(diǎn)的距離為絕對值.5、C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】2050000將小數(shù)點(diǎn)向左移6位得到2.05,所以2050000用科學(xué)記數(shù)法表示為:20.5×106,故選C.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.7、D【解析】

①首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE過點(diǎn)B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯(cuò)誤的;

③利用全等三角形的性質(zhì)和對頂角相等即可判定③說法正確;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計(jì)算即可判定;

⑤連接BD,根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;

由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,

所以∠BEP=90°,

過B作BF⊥AE,交AE的延長線于F,則BF的長是點(diǎn)B到直線AE的距離,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是錯(cuò)誤的;

因?yàn)椤鰽PD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯(cuò)誤的;

連接BD,則S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

綜上可知,正確的有①③⑤.故選D.【點(diǎn)睛】考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強(qiáng),解題時(shí)要求熟練掌握相關(guān)的基礎(chǔ)知識才能很好解決問題.8、C【解析】絕對值小于1的負(fù)數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定,0.00005=,故選C.9、D【解析】

先利用互余計(jì)算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計(jì)算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.10、D【解析】

根據(jù)全等三角形的性質(zhì)和已知圖形得出即可.【詳解】解:∵△MNP≌△MEQ,∴點(diǎn)Q應(yīng)是圖中的D點(diǎn),如圖,故選:D.【點(diǎn)睛】本題考查了全等三角形的性質(zhì),能熟記全等三角形的性質(zhì)的內(nèi)容是解此題的關(guān)鍵,注意:全等三角形的對應(yīng)角相等,對應(yīng)邊相等.11、B【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】210萬=2100000,2100000=2.1×106,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.12、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(diǎn)(不含端點(diǎn)B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當(dāng)AD=4時(shí),E的左右兩邊各有一個(gè)點(diǎn)D滿足條件,∴點(diǎn)D的個(gè)數(shù)共有3個(gè).故選C.考點(diǎn):等腰三角形的性質(zhì);勾股定理.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4.【解析】

過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時(shí),AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時(shí),AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過E作EG⊥AF,交FA的延長線于G,

由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,

∵∠BAC=75°,

∴∠EAF=150°,

∴∠EAG=30°,

∴EG=AE=AD,

當(dāng)AD⊥BC時(shí),AD最短,

∵BC=7,△ABC的面積為14,

∴當(dāng)AD⊥BC時(shí),,即:,∴.

∴△AEF的面積最小值為:

AF×EG=×4×2=4,故答案為:4.【點(diǎn)睛】本題主要考查了折疊問題,解題的關(guān)鍵是利用對應(yīng)邊和對應(yīng)角相等.14、π+4【解析】根據(jù)正方形的性質(zhì),得扇形所在的圓心角是90°,扇形的半徑是2.解:根據(jù)圖形中正方形的性質(zhì),得∠AOB=90°,OA=OB=2.∴扇形OAB的弧長等于π.15、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.16、36°或37°.【解析】分析:先過E作EG∥AB,根據(jù)平行線的性質(zhì)可得∠AEF=∠BAE+∠DFE,再設(shè)∠CEF=x,則∠AEC=2x,根據(jù)6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進(jìn)而得到∠C的度數(shù).詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設(shè)∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點(diǎn)睛:本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.17、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】

通過觀察可以看出(a+b)2的展開式為2次7項(xiàng)式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項(xiàng)系數(shù)分別為2、2、25、20、25、2、2.【詳解】通過觀察可以看出(a+b)2的展開式為2次7項(xiàng)式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項(xiàng)系數(shù)分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.18、(x-3)(x+1);【解析】根據(jù)因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項(xiàng)提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點(diǎn)睛:此題主要考查了因式分解,關(guān)鍵是明確因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進(jìn)行分解因式即可.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1),;(2).【解析】分析:(1)由已知求出A、E的坐標(biāo),即可得出m的值和一次函數(shù)函數(shù)的解析式;(2)由,得到,由,得到.設(shè)點(diǎn)坐標(biāo)為,則點(diǎn)坐標(biāo)為,代入反比例函數(shù)解析式即可得到結(jié)論.詳解:(1)∵為的中點(diǎn),∴.∵反比例函數(shù)圖象過點(diǎn),∴.設(shè)圖象經(jīng)過、兩點(diǎn)的一次函數(shù)表達(dá)式為:,∴,解得,∴.(2)∵,∴.∵,∴,∴.設(shè)點(diǎn)坐標(biāo)為,則點(diǎn)坐標(biāo)為.∵兩點(diǎn)在圖象上,∴,解得:,∴,∴,∴.點(diǎn)睛:本題考查了矩形的性質(zhì)以及反比例函數(shù)一次函數(shù)的解析式.解題的關(guān)鍵是求出點(diǎn)A、E、F的坐標(biāo).20、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點(diǎn)到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時(shí),PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點(diǎn)向x軸作垂線與直線相交,拋物線頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時(shí),MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點(diǎn)睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.21、(1);(2);(3)x=1.【解析】

(1)用不合格品的數(shù)量除以總量即可求得抽到不合格品的概率;(2)利用獨(dú)立事件同時(shí)發(fā)生的概率等于兩個(gè)獨(dú)立事件單獨(dú)發(fā)生的概率的積即可計(jì)算;(3)根據(jù)頻率估計(jì)出概率,利用概率公式列式計(jì)算即可求得x的值.【詳解】解:(1)∵4件同型號的產(chǎn)品中,有1件不合格品,∴P(不合格品)=;(2)共有12種情況,抽到的都是合格品的情況有6種,P(抽到的都是合格品)==;(3)∵大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=1.【點(diǎn)睛】本題考查利用頻率估計(jì)概率;概率公式;列表法與樹狀圖法.22、(1)拋物線解析式為y=﹣;(2)DF=3;(3)點(diǎn)E的坐標(biāo)為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解析】

(1)將點(diǎn)A、C坐標(biāo)代入拋物線解析式求解可得;(2)證△COD≌△DHE得DH=OC,由CF⊥FH知四邊形OHFC是矩形,據(jù)此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)設(shè)點(diǎn)D的坐標(biāo)為(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)和逆時(shí)針旋轉(zhuǎn)兩種情況,表示出點(diǎn)E的坐標(biāo),代入拋物線求得t的值,從而得出答案.【詳解】(1)∵拋物線y=﹣+bx+c交x軸于點(diǎn)A(﹣2,0)、C(0,3),∴,解得:,∴拋物線解析式為y=﹣+x+3;(2)如圖1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四邊形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如圖2,設(shè)點(diǎn)D的坐標(biāo)為(t,0).∵點(diǎn)E恰好在拋物線上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分兩種情況討論:①當(dāng)CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)時(shí),點(diǎn)E的坐標(biāo)為(t+3,t),代入拋物線y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以點(diǎn)E的坐標(biāo)E1(4,1)或E2(﹣,﹣);②當(dāng)CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)時(shí),點(diǎn)E的坐標(biāo)為(t﹣3,﹣t),代入拋物線y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故點(diǎn)E的坐標(biāo)E3(,﹣)或E4(,﹣);綜上所述:點(diǎn)E的坐標(biāo)為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【點(diǎn)睛】本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、全等三角形的判定與性質(zhì)、矩形的判定與性質(zhì)及分類討論思想的運(yùn)用.23、(1)1;(2);(3)x時(shí),y有最大值,最大值.【解析】

(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計(jì)算即可;(3)分三種情形討論求解即可解決問題:①當(dāng)0<x時(shí),M在OC上運(yùn)動,N在OB上運(yùn)動,此時(shí)過點(diǎn)N作NE⊥OC且交OC于點(diǎn)E.②當(dāng)x≤4時(shí),M在BC上運(yùn)動,N在OB上運(yùn)動.③當(dāng)4<x≤4.8時(shí),M、N都在BC上運(yùn)動,作OG⊥BC于G.【詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當(dāng)0<x時(shí),M在OC上運(yùn)動,N在OB上運(yùn)動,此時(shí)過點(diǎn)N作NE⊥OC且交OC于點(diǎn)E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時(shí),y有最大值,最大值.②當(dāng)x≤4時(shí),M在BC上運(yùn)動,N在OB上運(yùn)動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當(dāng)x時(shí),y取最大值,y,③當(dāng)4<x≤4.8時(shí),M、N都在BC上運(yùn)動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當(dāng)x=4時(shí),y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點(diǎn)睛】本題考查幾何變換綜合題、30度的直角三角形的性質(zhì)、等邊三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題.24、(1)詳見解析;(2)4分.【解析】

(1)根據(jù)題意用列表法求出答案;(2)算出甲乙獲勝的概率,從而求出乙勝一次的得分.【詳解】(1)列表如下:由列表可得:P(數(shù)字之和為5)=,(2)因?yàn)镻(甲勝)=,P(乙勝)=,∴甲勝一次得12分,要使這個(gè)游戲?qū)﹄p方公平,乙勝一次得分應(yīng)為:12÷3=4分.【點(diǎn)睛】本題考查概率問題中的公平性問題,解決本題的關(guān)鍵是計(jì)算出各種情況的概率,然后比較即可.25、(1)①2;②3;(2)AD=12【解析】

(1)①根據(jù)等邊三角形的性質(zhì)可得出AB=AC=1、∠BAC=60,結(jié)合“旋補(bǔ)三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長度;

②由“旋補(bǔ)三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進(jìn)而可得出△ABC≌△AB′C′(SAS),根據(jù)全等三角形的性質(zhì)可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長度;(2)AD=12BC,過點(diǎn)B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據(jù)平行四邊形的性質(zhì)結(jié)合“旋補(bǔ)三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進(jìn)而可證出△BAC≌△AB′E(SAS),根據(jù)全等三角形的性質(zhì)可得出BC=AE,由平行四邊形的對角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論