2023-2024學年廣東省廣州市華南師范大第二附屬中學中考數學最后一模試卷含解析_第1頁
2023-2024學年廣東省廣州市華南師范大第二附屬中學中考數學最后一模試卷含解析_第2頁
2023-2024學年廣東省廣州市華南師范大第二附屬中學中考數學最后一模試卷含解析_第3頁
2023-2024學年廣東省廣州市華南師范大第二附屬中學中考數學最后一模試卷含解析_第4頁
2023-2024學年廣東省廣州市華南師范大第二附屬中學中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省廣州市華南師范大第二附屬中學中考數學最后一模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小手蓋住的點的坐標可能為()A. B. C. D.2.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.3.計算36÷(﹣6)的結果等于()A.﹣6 B.﹣9 C.﹣30 D.64.小帶和小路兩個人開車從A城出發勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數關系如圖所示.有下列結論;①A,B兩城相距300km;②小路的車比小帶的車晚出發1h,卻早到1h;③小路的車出發后2.5h追上小帶的車;④當小帶和小路的車相距50km時,t=或t=.其中正確的結論有()A.①②③④ B.①②④C.①② D.②③④5.如圖,在半徑為5的⊙O中,弦AB=6,點C是優弧上一點(不與A,B重合),則cosC的值為()A. B. C. D.6.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.7.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=8.分別寫有數字0,﹣1,﹣2,1,3的五張卡片,除數字不同外其他均相同,從中任抽一張,那么抽到負數的概率是()A. B. C. D.9.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體10.方程有兩個實數根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<111.下列計算正確的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a312.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B.中秋節的晚上一定能看到月亮C.打開電視機,正在播少兒節目D.小紅今年14歲,她一定是初中學生二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若n邊形的內角和是它的外角和的2倍,則n=.14.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是15.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經過第一、三、四象限,當x1<x2時,y1與y2的大小關系為______________.16.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數y=的圖象上,則菱形的面積為_____.17.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______18.關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數根,則k的取值范圍是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發勻速步行到地,乙班從地出發勻速步行到地.兩班同時出發,相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數關系圖象如圖所示,根據圖象解答下列問題:直接寫出、與的函數關系式;求甲、乙兩班學生出發后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?20.(6分)已知是的函數,自變量的取值范圍是的全體實數,如表是與的幾組對應值.小華根據學習函數的經驗,利用上述表格所反映出的與之間的變化規律,對該函數的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:(1)從表格中讀出,當自變量是﹣2時,函數值是;(2)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;(3)在畫出的函數圖象上標出時所對應的點,并寫出.(4)結合函數的圖象,寫出該函數的一條性質:.21.(6分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?22.(8分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b的圖象與反比例函數y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.23.(8分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.24.(10分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數式表示);若b=3,tan∠DCE=,求a的值.25.(10分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;26.(12分)在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側,與y軸交于點A.求拋物線頂點M的坐標;若點A的坐標為,軸,交拋物線于點B,求點B的坐標;在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結合函數的圖象,求m的取值范圍.27.(12分)為了獎勵優秀班集體,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價各是多少元?若學校購買5副乒乓球拍和3副羽毛球拍,一共應支出多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據題意,小手蓋住的點在第四象限,結合第四象限點的坐標特點,分析選項可得答案.【詳解】根據圖示,小手蓋住的點在第四象限,第四象限的點坐標特點是:橫正縱負;分析選項可得只有B符合.故選:B.【點睛】此題考查點的坐標,解題的關鍵是記住各象限內點的坐標的符號,進而對號入座,四個象限的符號特點分別是:第一象限(+,+);第二象限(?,+);第三象限(?,?);第四象限(+,?).2、A【解析】

利用平行線的判定方法判斷即可得到結果.【詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【點睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.3、A【解析】分析:根據有理數的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數的除法,解題的關鍵是掌握有理數的除法法則:兩數相除,同號得正,異號得負,并把絕對值相除.2除以任何一個不等于2的數,都得2.4、C【解析】

觀察圖象可判斷①②,由圖象所給數據可求得小帶、小路兩車離開A城的距離y與時間t的關系式,可求得兩函數圖象的交點,可判斷③,再令兩函數解析式的差為50,可求得t,可判斷④,可得出答案.【詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發1h后出發的,且用時3h,即比小帶早到1h,∴①②都正確;設小帶車離開A城的距離y與t的關系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設小路車離開A城的距離y與t的關系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標為t=2.5,此時小路出發時間為1.5h,即小路車出發1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當100-40t=50時,可解得t=,當100-40t=-50時,可解得t=,又當t=時,y小帶=50,此時小路還沒出發,當t=時,小路到達B城,y小帶=250.綜上可知當t的值為或或或時,兩車相距50km,∴④不正確.故選C.【點睛】本題主要考查一次函數的應用,掌握一次函數圖象的意義是解題的關鍵,特別注意t是甲車所用的時間.5、D【解析】解:作直徑AD,連結BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.6、A【解析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個,∴主視圖不可能是.故選A.7、D【解析】

A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數的性質,即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數的性質、二次函數的最值以及二次函數圖象上點的坐標特征,利用二次函數的性質及二次函數圖象上點的坐標特征逐一分析四個選項的正誤是解題的關鍵.8、B【解析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數的概率是.故選B.考點:概率.9、A【解析】

根據三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結構特征,根據三視圖的形狀可判斷幾何體的形狀是關鍵.10、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.11、C【解析】選項A,原式=-16;選項B,不能夠合并;選項C,原式=9b2;選項D,原式=12、A【解析】

必然事件就是一定發生的事件,即發生的概率是1的事件,依據定義即可求解.【詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【點睛】該題考查的是對必然事件的概念的理解;必然事件就是一定發生的事件.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6【解析】此題涉及多邊形內角和和外角和定理多邊形內角和=180(n-2),外角和=360o所以,由題意可得180(n-2)=2×360o解得:n=614、4【解析】

當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數學的重點和難點,在中考中極為常見,一般以壓軸題形式出現,難度較大.15、y1<y1【解析】

直接利用一次函數的性質分析得出答案.【詳解】解:∵直線經過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關系為:y1<y1.故答案為:y1<y1.【點睛】此題主要考查了一次函數圖象上點的坐標特征,正確掌握一次函數增減性是解題關鍵.16、1【解析】

連接AC交OB于D,由菱形的性質可知.根據反比例函數中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數的圖象上,

的面積,

菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質及反比例函數的比例系數k的幾何意義.解題關鍵是反比例函數圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即.17、1【解析】

根據DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質,正確寫出比例式是解題的關鍵.18、k<1且k≠1【解析】試題分析:根據一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.解:∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故答案為k<1且k≠1.考點:根的判別式;一元二次方程的定義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】

(1)由圖象直接寫出函數關系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數關系是:y1=4x,乙班從B地出發勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數關系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設甲、乙兩班學生出發后,x小時相遇,則4x+5x=1,解得x=.當x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.20、(1);(2)見解析;(3);(4)當時,隨的增大而減小.【解析】

(1)根據表中,的對應值即可得到結論;(2)按照自變量由小到大,利用平滑的曲線連結各點即可;(3)在所畫的函數圖象上找出自變量為7所對應的函數值即可;(4)利用函數圖象的圖象求解.【詳解】解:(1)當自變量是﹣2時,函數值是;故答案為:.(2)該函數的圖象如圖所示;(3)當時所對應的點如圖所示,且;故答案為:;(4)函數的性質:當時,隨的增大而減小.故答案為:當時,隨的增大而減小.【點睛】本題考查了函數值,函數的定義:對于函數概念的理解:①有兩個變量;②一個變量的數值隨著另一個變量的數值的變化而發生變化;③對于自變量的每一個確定的值,函數值有且只有一個值與之對應.21、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據平移的性質得到DF∥AC,所以由平行線的性質、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數關系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據有一內角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點.∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點睛:本題是幾何變換綜合題型,主要考查了平移變換的性質,勾股定理,正方形的判定,菱形的判定與性質以及直角三角形斜邊上的中線.(2)難度稍大,根據三角形斜邊上的中線推知CD=BD=BF=BE是解題的關鍵.22、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數法即可求出直線AB的解析式;(1)根據函數圖像判斷即可;(3)利用一次函數圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數與一次函數的交點問題、一次(反比例)函數圖象上點的坐標特征、待定系數法求一次函數解析式以及三角形的面積,解題的關鍵是:(1)根據點的坐標利用待定系數法求出直線AB的解析式;(1)根據函數圖像判斷不等式取值范圍;(3)根據三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.23、(1)見解析(2)【解析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點睛】本題考查圓的綜合問題,涉及平行線的判定與性質,銳角三角函數,解方程等知識,綜合程度較高,需要學生靈活運用所學知識.24、(1);(2);(3).【解析】

(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據CD=3DE,構建方程即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論