2023-2024學年甘肅省白銀市平川四中中考數學適應性模擬試題含解析_第1頁
2023-2024學年甘肅省白銀市平川四中中考數學適應性模擬試題含解析_第2頁
2023-2024學年甘肅省白銀市平川四中中考數學適應性模擬試題含解析_第3頁
2023-2024學年甘肅省白銀市平川四中中考數學適應性模擬試題含解析_第4頁
2023-2024學年甘肅省白銀市平川四中中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年甘肅省白銀市平川四中中考數學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知,用尺規作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點2.關于的敘述正確的是()A.= B.在數軸上不存在表示的點C.=± D.與最接近的整數是33.下列等式正確的是()A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1C.a3+a3=a6 D.(ab)2=a4.據媒體報道,我國最新研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,這個數用科學記數法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1065.計算的結果是()A.1 B.﹣1 C.1﹣x D.6.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<17.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數分別為()A.4,30° B.2,60° C.1,30° D.3,60°8.如果關于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且9.某射擊選手10次射擊成績統計結果如下表,這10次成績的眾數、中位數分別是()成績(環)78910次數1432A.8、8 B.8、8.5 C.8、9 D.8、1010.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知點C為反比例函數上的一點,過點C向坐標軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為___________.12.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是13.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.14.大自然是美的設計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么PB的長度為__________cm.15.計算tan260°﹣2sin30°﹣cos45°的結果為_____.16.因式分解:4ax2﹣4ay2=_____.三、解答題(共8題,共72分)17.(8分)如圖,一次函數y=ax﹣1的圖象與反比例函數的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.18.(8分)如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經過點A、B、C.(1)求該拋物線的解析式;(2)根據圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.19.(8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數.20.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發生了側翻沉船事故,立即發出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)21.(8分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2,并指出她與嘉嘉抽到勾股數的可能性一樣嗎?22.(10分)化簡:.23.(12分)綿陽某公司銷售統計了每個銷售員在某月的銷售額,繪制了如下折線統計圖和扇形統計圖:

設銷售員的月銷售額為x(單位:萬元)。銷售部規定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優秀”.根據以上信息,解答下列問題:補全折線統計圖和扇形統計圖;求所有“稱職”和“優秀”的銷售員銷售額的中位數和眾數;為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數)?并簡述其理由.24.解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在數軸上表示出來:(4)原不等式的解集為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據作一個角等于已知角的作法即可得出結論.【詳解】解:用尺規作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫弧①,分別交OA、OB于點E、F,

第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫弧.

故選:D.【點睛】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.2、D【解析】

根據二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數軸上存在表示的點;選項C,;選項D,與最接近的整數是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數與數軸上的點是一一對應的關系、二次根式的化簡及無理數的估算等知識點,熟記這些知識點是解題的關鍵.3、B【解析】

(1)根據完全平方公式進行解答;(2)根據合并同類項進行解答;(3)根據合并同類項進行解答;(4)根據冪的乘方進行解答.【詳解】解:A、(a+b)2=a2+2ab+b2,故此選項錯誤;B、3n+3n+3n=3n+1,正確;C、a3+a3=2a3,故此選項錯誤;D、(ab)2=a2b,故此選項錯誤;故選B.【點睛】本題考查整數指數冪和整式的運算,解題關鍵是掌握各自性質.4、C【解析】試題分析:204000米/分,這個數用科學記數法表示2.04×105,故選C.考點:科學記數法—表示較大的數.5、B【解析】

根據同分母分式的加減運算法則計算可得.【詳解】解:原式====-1,故選B.【點睛】本題主要考查分式的加減法,解題的關鍵是熟練掌握同分母分式的加減運算法則.6、C【解析】

將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.7、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉角的度數分別為:2,60°故選B.考點:1、平移的性質;2、旋轉的性質;3、等邊三角形的判定8、B【解析】

在與一元二次方程有關的求值問題中,必須滿足下列條件:(1)二次項系數不為零;(2)在有兩個實數根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據根的情況求參數,熟記判別式與根的關系是解題的關鍵.9、B【解析】

根據眾數和中位數的概念求解.【詳解】由表可知,8環出現次數最多,有4次,所以眾數為8環;這10個數據的中位數為第5、6個數據的平均數,即中位數為=8.5(環),故選:B.【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.10、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當1-a=0時,即a=1,整式方程無解,當x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點睛:本題考查了分式方程的解,解決本題的關鍵是熟記分式方程無解的條件.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

解:由于點C為反比例函數上的一點,則四邊形AOBC的面積S=|k|=1.故答案為:1.12、4【解析】

當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數學的重點和難點,在中考中極為常見,一般以壓軸題形式出現,難度較大.13、x≥1【解析】

把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據圖象可以知道當x≥1時,y=x+1的函數值不小于y=mx+n相應的函數值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數與不等式(組)的關系及數形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數形結合.14、(15﹣5)【解析】

先利用黃金分割的定義計算出AP,然后計算AB-AP即得到PB的長.【詳解】∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案為(15﹣5).【點睛】本題考查了黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.其中AC=AB.15、1【解析】

分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.16、4a(x﹣y)(x+y)【解析】

首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.三、解答題(共8題,共72分)17、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數解析式求出a的值,代入反比例解析式求出k的值,聯立一次函數與反比例函數解析式求出B的坐標;(2)由A與B交點橫坐標,根據函數圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯立一次函數與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數綜合題,涉及的知識有:待定系數法確定函數解析式,一次函數與反比例函數的交點問題,坐標與圖形性質,勾股定理,銳角三角函數定義,相似三角形的判定與性質,利用了數形結合的思想,熟練運用數形結合思想是解題的關鍵.18、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P點坐標為(﹣1,2).【解析】分析:(1)、根據題意得出點A和點B的坐標,然后利用待定系數法求出二次函數的解析式;(2)、根據函數圖像得出不等式的解集;(3)、作PE⊥x軸于點E,交AB于點D,根據題意得出∠PDQ=∠ADE=45°,PD==1,然后設點P(x,﹣x2﹣x+2),則點D(x,x+2),根據PD的長度得出x的值,從而得出點P的坐標.詳解:(1)當y=0時,x+2=0,解得x=﹣2,當x=0時,y=0+2=2,則點A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分別代入y=ax2+bx+c得,解得.∴該拋物線的解析式為y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,則不等式ax2+(b﹣1)x+c>2的解集為﹣2<x<0;(3)如圖,作PE⊥x軸于點E,交AB于點D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,設點P(x,﹣x2﹣x+2),則點D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,則﹣x2﹣x+2=2,∴P點坐標為(﹣1,2).點睛:本題主要考查的是二次函數的性質以及直角三角形的性質,屬于基礎題型.利用待定系數法求出函數解析式是解決這個問題的關鍵.19、(1)詳見解析;(2)80°.【分析】(1)根據∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數.【解析】

(1)根據∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數.【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質.20、小時【解析】

過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時間大約為:50÷40=(小時).考點:解直角三角形的應用-方向角問題21、(1);(2)淇淇與嘉嘉抽到勾股數的可能性不一樣.【解析】試題分析:(1)根據等可能事件的概率的定義,分別確定總的可能性和是勾股數的情況的個數;(2)用列表法列舉出所有的情況和兩張卡片上的數都是勾股數的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現4種等可能結果,其中抽到的卡片上的數是勾股數的結果有3種,所以嘉嘉抽取一張卡片上的數是勾股數的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現的結果有12種,其中抽到的兩張卡片上的數都是勾股數的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數的可能性不一樣.22、【解析】

原式第一項利用完全平方公式化簡,第二項利用單項式乘多項式法則計算,去括號合并即可得到結果.【詳解】解:原式.23、(1)補全統計圖如圖見解析;(2)“稱職”的銷售員月銷售額的中位數為:22萬,眾數:21萬;“優秀”的銷售員月銷售額的中位數為:26萬,眾數:25

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論