




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省珠海一中等六校2025屆高一數學第二學期期末經典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某正弦型函數的圖像如圖,則該函數的解析式可以為().A. B.C. D.2.己知ΔABC中,角A,B,C所對的邊分別是a,b,c.若A=45°,B=30°,a=2,則bA.3-1 B.1 C.2 D.3.若且,則下列不等式成立的是()A. B. C. D.4.若三棱錐中,,,,且,,,則該三棱錐外接球的表面積為()A. B. C. D.5.下列函數中,既是奇函數又是增函數的為()A. B. C. D.6.若是兩條不同的直線,是三個不同的平面,則下列結論中正確的是()A.若,則 B.若,則C.若,則 D.若,則7.已知等比數列,若,則()A. B. C.4 D.8.設集合,則A. B. C. D.9.設為銳角三角形,則直線與兩坐標軸圍成的三角形的面積的最小值是()A.10 B.8 C.4 D.210.已知全集,則集合A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,若a2=b2+bc+c2,則A=________.12.把一枚質地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.13.執行如圖所示的程序框圖,則輸出的_______.14.已知數列{}滿足,若數列{}單調遞增,數列{}單調遞減,數列{}的通項公式為____.15.函數的值域為________.16.將無限循環小數化為分數,則所得最簡分數為______;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數列滿足,且(,且).(1)求證:數列是等差數列;(2)求數列的通項公式(3)設數列的前項和,求證:.18.△ABC在內角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面積的最大值.19.已知.(1)求的值;(2)求的值.20.已知數列滿足,.(1)證明:是等比數列;(2)求數列的前n項和.21.已知數列滿足若數列滿足:(1)求數列的通項公式;(2)求證:是等差數列.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由圖象可得最大值為2,則A=2,周期,∴∴,又,是五點法中的第一個點,∴,∴把A,B排除,對于C:,故選C考點:本題考查函數的圖象和性質點評:解決本題的關鍵是確定的值2、B【解析】
由正弦定理可得.【詳解】∵asinA=故選B.【點睛】本題考查正弦定理,解題時直接應用正弦定理可解題,本題屬于基礎題.3、D【解析】
利用不等式的性質對四個選項逐一判斷.【詳解】選項A:,符合,但不等式不成立,故本選項是錯誤的;選項B:當符合已知條件,但零沒有倒數,故不成立,故本選項是錯誤的;選項C:當時,不成立,故本選項是錯誤的;選項D:因為,所以根據不等式的性質,由能推出,故本選項是正確的,因此本題選D.【點睛】本題考查了不等式的性質,結合不等式的性質,舉特例是解決這類問題的常見方法.4、B【解析】
將棱錐補成長方體,根據長方體的外接球的求解方法法得到結果.【詳解】根據題意得到棱錐的三條側棱兩兩垂直,可以以三條側棱為長方體的楞,該三棱錐補成長方體,兩者的外接球是同一個,外接球的球心是長方體的體對角線的中點處。設球的半徑為R,則表面積為故答案為:B.【點睛】本題考查了球與幾何體的問題,是高考中的重點問題,要有一定的空間想象能力,這樣才能找準關系,得到結果,一般外接球需要求球心和半徑,首先應確定球心的位置,借助于外接球的性質,球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線(這兩個多邊形需有公共點),這樣兩條直線的交點,就是其外接球的球心,再根據半徑,頂點到底面中心的距離,球心到底面中心的距離,構成勾股定理求解,有時也可利用補體法得到半徑,例:三條側棱兩兩垂直的三棱錐,可以補成長方體,它們是同一個外接球.5、D【解析】
根據奇函數和增函數的定義逐項判斷.【詳解】選項A:不是奇函數,不正確;選項B::在是減函數,不正確;選項C:定義域上沒有單調性,不正確;選項D:設,是奇函數,,在都是單調遞增,且在處是連續的,在上單調遞增,所以正確.故選:D.【點睛】本題考查函數的性質,對于常用函數的性質要熟練掌握,屬于基礎題.6、C【解析】
試題分析:兩個平面垂直,一個平面內的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關系.【詳解】請在此輸入詳解!7、D【解析】
利用等比數列的通項公式求得公比,進而求得的值.【詳解】∵,∴.故選:D.【點睛】本題考查等比數列通項公式,考查運算求解能力,屬于基礎題.8、B【解析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應先把集合化簡再計算,常常借助數軸或韋恩圖進行處理.9、B【解析】
令,得直線在x、y軸上的截距,求得三角形面積并利用二倍角公式化簡,根據三角函數圖象和性質求得面積最小值即可.【詳解】令得直線在y軸上的截距為,令得直線在x軸上的截距為,其圍成的三角形面積:,求S的最小值轉化為求函數的最小值,因為為銳角,所以,當時取最小值?1,則,故圍成三角形面積最小值為8.故選:B.【點睛】本題考查直線方程與三角函數二倍角公式的應用,綜合題性較強,屬于中等題.10、C【解析】
直接利用集合補集的定義求解即可.【詳解】因為全集,所以0,2屬于全集且不屬于集合A,所以集合,故選:C.【點睛】本題主要考查集合補集的定義,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A為△ABC的內角,∴A=120°故答案為:120°12、【解析】
把一枚質地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結果.13、【解析】
按照程序框圖運行程序,直到a的值滿足a>100時,輸出結果即可.【詳解】第一次循環:a=3;第二次循環:a=7;第三次循環:a=15;第四次循環:a=31;第五次循環:a=63;第六次循環:a=127,a>100,所以輸出a.所以本題答案為127.【點睛】本題考查根據程序框圖中的循環結構計算輸出結果的問題,屬于基礎題.14、【解析】
分別求出{}、{}的通項公式,再統一形式即可得解。【詳解】解:根據題意,又單調遞減,{}單調遞減增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,綜上,【點睛】本題考查了等比數列性質的靈活運用,考查了分類思想和運算能力,屬于難題。15、【解析】
利用反三角函數的單調性即可求解.【詳解】函數是定義在上的增函數,函數在區間上單調遞增,,,函數的值域是.故答案為:【點睛】本題考查了反三角函數的單調性以及反三角函數值,屬于基礎題.16、【解析】
將設為,考慮即為,兩式相減構造方程即可求解出的值,即可得到對應的最簡分數.【詳解】設,則,由可知,解得.故答案為:.【點睛】本題考查將無限循環小數化為最簡分數,主要采用方程的思想去計算,難度較易.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2);(3)詳見解析.【解析】
(1)用定義證明得到答案.(2)推出(3)利用錯位相減法和分組求和法得到,再證明不等式.【詳解】解:(1)由,得,即.∴數列是以為首項,1為公差的等差數列.(2)∵數列是以為首項,1為公差的等差數列,∴,∴.(3).∴,∴.【點睛】本題考查了等差數列的證明,分組求和法,錯位相減法,意在考查學生對于數列公式方法的靈活運用.18、(Ⅰ)B=(Ⅱ)【解析】
(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB①在三角形ABC中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC②由①和②得sinBsinC=cosBsinC而C∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2)S△ABCacsinBac,由已知及余弦定理得:4=a2+c2﹣2accos2ac﹣2ac,整理得:ac,當且僅當a=c時,等號成立,則△ABC面積的最大值為(2)1.19、(1);(2)【解析】
試題分析:(1)利用正切的兩角和公式求的值;(2)利用第一問的結果求第二問,但需要先將式子化簡,最后變形成關于的式子,需要運用三角函數的倍角公式將化成單角的三角函數,然后分子分母都除以,然后代入的值即可.試題解析:(1)由(2)考點:1.正切的兩角和公式;2.正余弦的倍角公式.20、(1)見解析;(2).【解析】
(1)由題設,化簡得,即可證得數列為等比數列.(2)由(1),根據等比數列的通項公式,求得,利用等比數列的前n項和公式,即可求得數列的前n項和.【詳解】(1)由題意,數列滿足,所以又因為,所以,即,所以是以2為首項,2為公比的等比數列.(2)由(1),根據等比數列的通項公式,可得,即,所以,即.【點睛】本題主要考查了等比數列的定義,以及等比數列的通項公式及前n項和公式的應用,其中解答中熟記等比數列的定義,以及等比數列的通項公式和前n項和的公式,準確計算是解答的關鍵,著重考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論