




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省正安縣第八中學新高考壓軸卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若恒成立,則滿足條件的的個數為()A.0 B.1 C.2 D.32.若復數滿足,其中為虛數單位,是的共軛復數,則復數()A. B. C.4 D.53.已知定義在上的函數的周期為4,當時,,則()A. B. C. D.4.中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里5.“十二平均律”是通用的音律體系,明代朱載堉最早用數學方法計算出半音比例,為這個理論的發展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.6.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.7.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]8.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立9.已知,則,不可能滿足的關系是()A. B. C. D.10.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或111.已知函數的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數的取值范圍是()A. B. C. D.12.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則____________.14.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.15.定義在R上的函數滿足:①對任意的,都有;②當時,,則函數的解析式可以是______________.16.已知定義在的函數滿足,且當時,,則的解集為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,分別為三個內角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.18.(12分)已知函數.(1)討論函數單調性;(2)當時,求證:.19.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.20.(12分)在中,內角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.21.(12分)已知函數.(1)解不等式;(2)若函數存在零點,求的求值范圍.22.(10分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數方程為(為參數),求直線與曲線的交點的直角坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數,綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數,設(a),則(a)由導數的應用可得:(a)在為減函數,在,為增函數,則(a),即有一解,又,均為增函數,所以存在1個使得成立,綜合①②③得:滿足條件的的個數是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數研究函數的解得個數,重點考查了分類討論的數學思想方法,屬難度較大的題型.2、D【解析】
根據復數的四則運算法則先求出復數z,再計算它的模長.【詳解】解:復數z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數的計算問題,要求熟練掌握復數的四則運算以及復數長度的計算公式,是基礎題.3、A【解析】
因為給出的解析式只適用于,所以利用周期性,將轉化為,再與一起代入解析式,利用對數恒等式和對數的運算性質,即可求得結果.【詳解】定義在上的函數的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數的周期性求函數值,對數的運算性質,屬于中檔題.4、B【解析】
人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數列的應用,意在考查學生的計算能力和應用能力.5、D【解析】分析:根據等比數列的定義可知每一個單音的頻率成等比數列,利用等比數列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數列的實際應用,解決本題的關鍵是能夠判斷單音成等比數列.等比數列的判斷方法主要有如下兩種:(1)定義法,若()或(),數列是等比數列;(2)等比中項公式法,若數列中,且(),則數列是等比數列.6、B【解析】
由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.7、B【解析】
先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.8、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.9、C【解析】
根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題10、D【解析】
求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據切線方程求參數,屬于基礎題.11、A【解析】
可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數的增減性,結合函數圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據題意畫出函數大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數形結合思想求解函數交點問題,導數研究函數增減性,找準臨界是解題的關鍵,屬于中檔題12、A【解析】
根據雙曲線的焦距是虛軸長的2倍,可得出,結合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點睛】本題考查雙曲線的簡單幾何性質,以及雙曲線的漸近線方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于,,則.14、【解析】
根據個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.15、(或,答案不唯一)【解析】
由可得是奇函數,再由時,可得到滿足條件的奇函數非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數,由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數的性質,涉及到由表達式確定函數奇偶性,是一道開放性的題,難度不大.16、【解析】
由已知得出函數是偶函數,再得出函數的單調性,得出所解不等式的等價的不等式,可得解集.【詳解】因為定義在的函數滿足,所以函數是偶函數,又當時,,得時,,所以函數在上單調遞減,所以函數在上單調遞減,函數在上單調遞增,所以不等式等價于,即或,解得或,所以不等式的解集為:.故答案為:.【點睛】本題考查抽象函數的不等式的求解,關鍵得出函數的奇偶性,單調性,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)整理得:,再由余弦定理可得,問題得解.(2)由正弦定理得:,,,再代入即可得解.【詳解】(1)由題意,得,∴;(2)由正弦定理,得,,∴.【點睛】本題主要考查了正、余弦定理及三角形面積公式,考查了轉化思想及化簡能力,屬于基礎題.18、(1)見解析(2)見解析【解析】
(1)根據的導函數進行分類討論單調性(2)欲證,只需證,構造函數,證明,這時需研究的單調性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數單調性的方法和用函數的最值證明不等式的方法,難題.19、(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.【點睛】本題考查正余弦定理在解三角形中的應用,考查學生的計算能力,是一道中檔題.20、(1);(2).【解析】
(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;
(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數的恒等變換,考查化簡整理的運算能力,屬于中檔題.21、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,轉化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數零點問題轉化為曲線交點問題解決,數形結合得到結果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數存在零點則可轉化為函數與的圖像存在交點,函數在上單調增,在上單調遞減,且.數形結合可知.【點睛】該題考查的是有關不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家樂福門禁管理制度
- 庫房收發貨管理制度
- 應急備品房管理制度
- 形象崗執勤管理制度
- 微粒貸內部管理制度
- 心絞痛培訓管理制度
- 快遞經營與管理制度
- 急診科閉環管理制度
- 總承包各項管理制度
- 患者外帶藥管理制度
- 糧油倉儲管理員(高級)職業技能鑒定參考試題(附答案)
- 2024北京朝陽區四年級(下)期末語文試題及答案
- 2025年中考語文常考作文押題《10個主題+15篇范文》
- 2025年新音樂節明星藝人歌手演出場費報價單
- 主要施工機械設備、勞動力、設備材料投入計劃及其保證措施
- 制缽機的設計(機械CAD圖紙)
- 學校財務管理制度
- 三年級下冊美術課件-第15課色彩拼貼畫|湘美版(共11張PPT)
- 水稻病蟲統防統治工作總結
- 水在不同溫度下的折射率、粘度和介電常數
- howdoyoucometoschoolPPT課件
評論
0/150
提交評論