江蘇省南京市玄武高級中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第1頁
江蘇省南京市玄武高級中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第2頁
江蘇省南京市玄武高級中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第3頁
江蘇省南京市玄武高級中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第4頁
江蘇省南京市玄武高級中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市玄武高級中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.小金同學(xué)在學(xué)校中貫徹著“邊玩邊學(xué)”的學(xué)風(fēng),他在“漢諾塔”的游戲中發(fā)現(xiàn)了數(shù)列遞推的奧妙:有、、三個木樁,木樁上套有編號分別為、、、、、、的七個圓環(huán),規(guī)定每次只能將一個圓環(huán)從一個木樁移動到另一個木樁,且任意一個木樁上不能出現(xiàn)“編號較大的圓環(huán)在編號較小的圓環(huán)之上”的情況,現(xiàn)要將這七個圓環(huán)全部套到木樁上,則所需的最少次數(shù)為()A. B. C. D.2.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點A.向左平行移動個單位長度B.向右平行移動個單位長度C.向左平行移動個單位長度D.向右平行移動個單位長度3.設(shè)的內(nèi)角所對的邊分別為,且,已知的面積等于,,則的值為()A. B. C. D.4.某小組共有5名學(xué)生,其中男生3名,女生2名,現(xiàn)選舉2名代表,則恰有1名女生當(dāng)選的概率為()A. B. C. D.5.甲、乙兩位射擊運動員的5次比賽成績(單位:環(huán))如莖葉圖所示,若兩位運動員平均成績相同,則成績較穩(wěn)定(方差較小)的那位運動員成績的方差為A.2 B.4 C.6 D.86.已知數(shù)列滿足,,則()A.1024 B.2048 C.1023 D.20477.如圖,網(wǎng)格紙上小正方形的邊長均為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.34 B.42 C.54 D.728.已知,,,則()A. B. C. D.9.已知,則的最小值為()A.2 B.0 C.-2 D.-410.設(shè)集合,集合為函數(shù)的定義域,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則______;的最小值為______.12.已知數(shù)列是正項數(shù)列,是數(shù)列的前項和,且滿足.若,是數(shù)列的前項和,則_______.13.已知,,,則的最小值為______.14.若,則的值為_______.15.若(),則_______(結(jié)果用反三角函數(shù)值表示).16.若關(guān)于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},則關(guān)于x的不等式cx2+bx+a>0的解集是____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,.(1)求關(guān)于的表達(dá)式,并求的最小正周期;(2)若當(dāng)時,的最小值為,求的值.18.如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點是的中點.(1)求證:;(2)求證:(3)求三棱錐的體積.19.有同一型號的汽車100輛,為了解這種汽車每耗油所行路程的情況,現(xiàn)從中隨機(jī)地抽出10輛,在同一條件下進(jìn)行耗油所行路程的試驗,得到如下樣本數(shù)據(jù)(單位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分組如下:(1)完成上面的頻率分布表;(2)根據(jù)上表,在坐標(biāo)系中畫出頻率分布直方圖.20.如圖,甲、乙兩個企業(yè)的用電負(fù)荷量關(guān)于投產(chǎn)持續(xù)時間(單位:小時)的關(guān)系均近似地滿足函數(shù).(1)根據(jù)圖象,求函數(shù)的解析式;(2)為使任意時刻兩企業(yè)用電負(fù)荷量之和不超過9,現(xiàn)采用錯峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時投產(chǎn),求的最小值.21.已知,(1)求;(2)若,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

假設(shè)樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,根據(jù)題意求出數(shù)列的遞推公式,利用遞推公式求出數(shù)列的通項公式,從而得出的值,可得出結(jié)果.【詳解】假設(shè)樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,可這樣操作,先將個圓環(huán)從木樁全部套到木樁上,至少需要的次數(shù)為,然后將最大的圓環(huán)從木樁套在木樁上,需要次,在將木樁上個圓環(huán)從木樁套到木樁上,至少需要的次數(shù)為,所以,,易知.設(shè),得,對比得,,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故選:B.【點睛】本題考查數(shù)列遞推公式的應(yīng)用,同時也考查了利用待定系數(shù)法求數(shù)列的通項,解題的關(guān)鍵就是利用題意得出數(shù)列的遞推公式,考查推理能力與運算求解能力,屬于中等題.2、D【解析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向右平行移動個單位長度,故選D.【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個單位得的圖象,再把橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得的圖象,另一種是把的圖象橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得的圖象,再向左平移個單位得的圖象.3、D【解析】

由正弦定理化簡已知,結(jié)合,可求,利用同角三角函數(shù)基本關(guān)系式可求,進(jìn)而利用三角形的面積公式即可解得的值.【詳解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面積,解得.故選:.【點睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.4、B【解析】

記三名男生為,兩名女生為,分別列舉出基本事件,得出基本事件總數(shù)和恰有1名女生當(dāng)選包含的基本事件個數(shù),即可得解.【詳解】記三名男生為,兩名女生為,任選2名所有可能情況為,共10種,恰有一名女生的情況為,共6種,所以恰有1名女生當(dāng)選的概率為.故選:B【點睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于準(zhǔn)確計算出基本事件總數(shù),和某一事件包含的基本事件個數(shù).5、A【解析】

根據(jù)平均數(shù)相同求出x的值,再根據(jù)方差的定義計算即可.【詳解】根據(jù)莖葉圖中的數(shù)據(jù)知,甲、乙二人的平均成績相同,即×(87+89+90+91+93)=×(88+89+90+91+90+x),解得x=1,所以平均數(shù)為=90;根據(jù)莖葉圖中的數(shù)據(jù)知甲的成績波動性小,較為穩(wěn)定(方差較小),所以甲成績的方差為s1=×[(88﹣90)1+(89﹣90)1+(90﹣90)1+(91﹣90)1+(91﹣90)1]=1.故選A.【點睛】莖葉圖的優(yōu)點是保留了原始數(shù)據(jù),便于記錄及表示,能反映數(shù)據(jù)在各段上的分布情況.莖葉圖不能直接反映總體的分布情況,這就需要通過莖葉圖給出的數(shù)據(jù)求出數(shù)據(jù)的數(shù)字特征,進(jìn)一步估計總體情況.6、C【解析】

根據(jù)疊加法求結(jié)果.【詳解】因為,所以,因此,選C.【點睛】本題考查疊加法求通項以及等比數(shù)列求和,考查基本分析求解能力,屬基礎(chǔ)題.7、C【解析】

還原幾何體得四棱錐E﹣ABCD,由圖中數(shù)據(jù)利用椎體的體積公式求解即可.【詳解】依三視圖知該幾何體為四棱錐E﹣ABCD,如圖,ABCD是直角梯形,是棱長為6的正方體的一部分,梯形的面積為:12幾何體的體積為:13故選:C.【點睛】本題考查三視圖求幾何體的體積,由三視圖正確還原幾何體和補(bǔ)形是解題的關(guān)鍵,考查空間想象能力.8、C【解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可求解.【詳解】為減函數(shù),,為增函數(shù),,為增函數(shù),,所以,故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較指數(shù)式、對數(shù)式的大小,屬于基礎(chǔ)題.9、D【解析】

根據(jù)不等式組畫出可行域,借助圖像得到最值.【詳解】根據(jù)不等式組畫出可行域得到圖像:將目標(biāo)函數(shù)化為,根據(jù)圖像得到當(dāng)目標(biāo)函數(shù)過點時取得最小值,代入此點得到z=-4.故答案為:D.【點睛】利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標(biāo)系內(nèi)作出可行域;(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型);(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解;(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值。10、B【解析】

解不等式化簡集合的表示,求出函數(shù)的定義域,表示成集合的形式,運用集合的并集運算法則,結(jié)合數(shù)軸求出.【詳解】因為,所以.又因為函數(shù)的定義域為,所以.因此,故本題選B.【點睛】本題考查了集合的并集運算,正確求出對數(shù)型函數(shù)的定義域,運用數(shù)軸是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、50【解析】

由分段函數(shù)的表達(dá)式,代入計算即可;先求出的表達(dá)式,結(jié)合分段函數(shù)的性質(zhì),求最小值即可.【詳解】由,可得,,所以;由的表達(dá)式,可得,當(dāng)時,,此時,當(dāng)時,,由二次函數(shù)的性質(zhì)可知,,綜上,的最小值為0.故答案為:5;0.【點睛】本題考查求函數(shù)值,考查分段函數(shù)的性質(zhì),考查函數(shù)最值的計算,考查學(xué)生的計算能力,屬于基礎(chǔ)題.12、【解析】

利用將變?yōu)椋戆l(fā)現(xiàn)數(shù)列{}為等差數(shù)列,求出,進(jìn)一步可以求出,再將,代入,發(fā)現(xiàn)可以裂項求的前99項和。【詳解】當(dāng)時,符合,當(dāng)時,符合,【點睛】一般公式的使用是將變?yōu)椋绢}是將變?yōu)椋o后面的整理帶來方便。先求,再求,再求,一切都順其自然。13、【解析】

將所求的式子變形為,展開后可利用基本不等式求得最小值.【詳解】解:,,,,當(dāng)且僅當(dāng)時取等號.故答案為1.【點睛】本題考查了“乘1法”和基本不等式,屬于基礎(chǔ)題.由于已知條件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式來求得最小值了.14、【解析】

把已知等式展開利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【點睛】本題考查三角函數(shù)的化簡求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.15、【解析】

根據(jù)反三角函數(shù)以及的取值范圍,求得的值.【詳解】由于,所以,所以.故答案為:【點睛】本小題主要考查已知三角函數(shù)值求角,考查反三角函數(shù),屬于基礎(chǔ)題.16、{x|-1<x<-}【解析】

觀察兩個不等式的系數(shù)間的關(guān)系,得出其根的關(guān)系,再由和的正負(fù)可得解.【詳解】由已知可得:的兩個根是和,且將方程兩邊同時除以,得,所以的兩個根是和,且解集是故得解.【點睛】本題考查一元二次方程和一元二次不等式間的關(guān)系,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)根據(jù)向量數(shù)量積的坐標(biāo)運算及輔助角公式得:,并求出最小正周期為;(2)由,得到,從而,再根據(jù)的最小值為,求得.【詳解】(1),所以.(2)當(dāng)時,則,所以,所以,解得:.【點睛】本題考查向量與三角函數(shù)的交會,求函數(shù)的最值時,要注意整體思想的運用,即先求出,再得到.18、(1)見解析;(2)見解析;(3)8.【解析】試題分析:(1)由勾股定理得,由面得到,從而得到面,故;(2)連接交于點,則為的中位線,得到∥,從而得到∥面;(3)過作垂足為,面,面積法求,求出三角形的面積,代入體積公式進(jìn)行運算.試題解析:(1)證明:在中,由勾股定理得為直角三角形,即.又面,,,面,.(2)證明:設(shè)交于點,則為的中點,連接,則為的中位線,則在中,∥,又面,則∥面.(3)在中過作垂足為,由面⊥面知,面,.而,,.考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積.19、(1)見解析;(2)見解析【解析】

(1)通過所給數(shù)據(jù)算出頻數(shù)和頻率值,并填入表格中;(2)計算每組數(shù)中的頻率除以組距的值,再畫出直方圖.【詳解】(1)頻率分布表如下:分組頻數(shù)頻率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合計101.0(2)頻率分布直方圖如圖所示:【點睛】本題考查頻率分布表和頻率分布直方圖的簡單應(yīng)用,考查基本的數(shù)據(jù)處理能力.20、(1);(2)4【解析】

(1)由,得,由,得A,b,代入,求得,從而即可得到本題答案;(2)由題,得恒成立,等價于恒成立,然后利用和差公式展開,結(jié)合輔助角公式,逐步轉(zhuǎn)化,即可得到本題答案.【詳解】(1)解:由圖知,又,可得,代入,得,又,所求為(2)設(shè)乙投產(chǎn)持續(xù)時間為小時,則甲的投產(chǎn)持續(xù)時間為小時,由誘導(dǎo)公式,企業(yè)乙用電負(fù)荷量隨持續(xù)時間變化的關(guān)系式為:同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論