2023-2024學年山西省呂梁市臨縣第一中學高一數學第二學期期末預測試題含解析_第1頁
2023-2024學年山西省呂梁市臨縣第一中學高一數學第二學期期末預測試題含解析_第2頁
2023-2024學年山西省呂梁市臨縣第一中學高一數學第二學期期末預測試題含解析_第3頁
2023-2024學年山西省呂梁市臨縣第一中學高一數學第二學期期末預測試題含解析_第4頁
2023-2024學年山西省呂梁市臨縣第一中學高一數學第二學期期末預測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山西省呂梁市臨縣第一中學高一數學第二學期期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的三個內角所對的邊分別為,滿足,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.頂角為的等腰三角形 D.頂角為的等腰三角形2.若,則的坐標是()A. B. C. D.3.已知數列的前項和為,且,則()A. B. C. D.4.把函數y=sin(2x﹣)的圖象向右平移個單位得到的函數解析式為()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x5.已知向量,向量,且,那么等于()A. B. C. D.6.角的終邊在直線上,則()A. B. C. D.7.把十進制數化為二進制數為A. B.C. D.8.關于x的不等式的解集是,則關于x的不等式的解集是()A. B.C. D.9.已知,集合,則A. B. C. D.10.在中,角的對邊分別為,若,則A.無解 B.有一解C.有兩解 D.解的個數無法確定二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內角的對邊分別為,若的周長為,面積為,,則__________.12.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.13.已知數列的通項公式,則_______.14.已知是奇函數,且,則_______.15.在中,角,,所對的邊分別為,,,已知,,,則______.16.已知x、y滿足約束條件,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,已知,,(1)若,且的面積為,求的面積:(2)若,求的最大值.18.正項數列的前項和為,且.(Ⅰ)試求數列的通項公式;(Ⅱ)設,求的前項和為.(Ⅲ)在(Ⅱ)的條件下,若對一切恒成立,求實數的取值范圍.19.已知向量,,且.(1)求的值;(2)求的值.20.某校準備從高一年級的兩個男生和三個女生中選擇2個人去參加一項比賽.(1)若從這5個學生中任選2個人,求這2個人都是女生的概率;(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.21.如圖,某廣場中間有一塊綠地,扇形所在圓的圓心為,半徑為,,廣場管理部門欲在綠地上修建觀光小路:在上選一點,過修建與平行的小路,與平行的小路,設所修建的小路與的總長為,.(1)試將表示成的函數;(2)當取何值時,取最大值?求出的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

先利用同角三角函數基本關系得,結合正余弦定理得進而得B,再利用化簡得,得A值進而得C,則形狀可求【詳解】由題即,由正弦定理及余弦定理得即故整理得,故故為頂角為的等腰三角形故選D【點睛】本題考查利用正余弦定理判斷三角形形狀,注意內角和定理,三角恒等變換的應用,是中檔題2、C【解析】

,.故選C.3、D【解析】

通過和關系,計算通項公式,再計算,代入數據得到答案.【詳解】,取,兩式相減得:是首項為4,公比為2的等比數列.故答案選D【點睛】本題考查了等比數列的通項公式,前N項和,意在考查學生的計算能力.4、D【解析】試題分析:三角函數的平移原則為左加右減上加下減.直接求出平移后的函數解析式即可.解:把函數y=sin(2x﹣)的圖象向右平移個單位,所得到的圖象的函數解析式為:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故選D.考點:函數y=Asin(ωx+φ)的圖象變換.5、D【解析】

由兩向量平行,其向量坐標交叉相乘相等,得到.【詳解】因為,所以,解得:.【點睛】本題考查向量平行的坐標運算,考查基本運算,注意符號的正負.6、C【解析】

先由直線的斜率得出,再利用誘導公式將分式化為弦的一次分式齊次式,并在分子分母中同時除以,利用弦化切的思想求出所求代數式的值.【詳解】角的終邊在直線上,,則,故選C.【點睛】本題考查誘導公式化簡求值,考查弦化切思想的應用,弦化切一般適用于以下兩個方面:(1)分式為角弦的次分式齊次式,在分子分母中同時除以,可以弦化切;(2)代數式為角的二次整式,先除以,轉化為角弦的二次分式其次式,然后在分子分母中同時除以,可以實現弦化切.7、C【解析】選C.8、D【解析】

由不等式與方程的關系可得且,則等價于,再結合二次不等式的解法求解即可.【詳解】解:由關于x的不等式的解集是,由不等式與方程的關系可得且,則等價于等價于,解得,即關于x的不等式的解集是,故選:D.【點睛】本題考查了不等式與方程的關系,重點考查了二次不等式的解法,屬基礎題.9、D【解析】

先求出集合A,由此能求出?UA.【詳解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴?UA={x|x}.故選:D.【點睛】本題考查補集的求法,考查補集定義、不等式性質等基礎知識,考查運算求解能力,是基礎題.10、C【解析】

求得,根據,即可判定有兩解,得到答案.【詳解】由題意,因為,又由,且,所以有兩解.【點睛】本題主要考查了三角形解的個數的判定,以及正弦定理的應用,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據正、余弦定理結合已知條件靈活轉化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉化的方向;第二步:定工具,即根據條件和所求合理選擇轉化的工具,實施邊角之間的互化;第三步:求結果.12、825【解析】

以AB,BC所在直線為坐標軸建立平面直角坐標系,設直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點M作△ABC的三邊的垂線,設⊙M的半徑為r,則r2,以AB,BC所在直線為坐標軸建立平面直角坐標系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當k>﹣3時,4(k+3)25≥825,當且僅當4(k+3),即k3時取等號;②當k<﹣3時,則4(k+3)23≥823,當且僅當﹣4(k+3),即k3時取等號.故答案為:825【點睛】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學生對這些知識的理解掌握水平.13、【解析】

本題考查的是數列求和,關鍵是構造新數列,求和時先考慮比較特殊的前兩項,剩余7項按照等差數列求和即可.【詳解】令,則所求式子為的前9項和.其中,,從第三項起,是一個以1為首項,4為公差的等差數列,,故答案為1.【點睛】本題考查的是數列求和,關鍵在于把所求式子轉換成為等差數列的前項和,另外,帶有絕對值的數列在求和時要注意里面的特殊項.14、【解析】

根據奇偶性定義可知,利用可求得,從而得到;利用可求得結果.【詳解】為奇函數又即,解得:本題正確結果:【點睛】本題考查根據函數的奇偶性求解函數值的問題,屬于基礎題.15、30°【解析】

直接利用正弦定理得到或,再利用大角對大邊排除一個答案.【詳解】即或,故,故故答案為【點睛】本題考查了正弦定理,沒有利用大角對大邊排除一個答案是容易發生的錯誤.16、-3【解析】

作出可行域,目標函數過點時,取得最小值.【詳解】作出可行域如圖表示:目標函數,化為,當過點時,取得最大值,則取得最小值,由,解得,即,的最小值為.故答案為:【點睛】本題考查二元一次不等式組表示平面區域,以及線性目標函數的最值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)3【解析】

(1)根據可解出,驗證出,從而求得所求面積;(2)設,,在中利用余弦定理構造關于的方程;在中分別利用正余弦定理可得到和,代入可求得;根據三角函數最值可求得的最大值,即可得到結果.【詳解】(1)由得:,即(2)設,在中,由正弦定理得:…①由余弦定理得:…②在中,由余弦定理得:將①②代入整理得:當,即時,取最大值【點睛】本題考查解三角形的相關知識,涉及到正弦定理、余弦定理和三角形面積公式的應用;本題中線段長度最值的求解的關鍵是能夠利用正余弦定理構造方程,將問題轉化為三角函數最值的求解問題.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)將所給條件式子兩邊同時平方,利用遞推法可得的表達式,由兩式相減,變形即可證明數列為等差數列,進而結合首項與公差求得的通項公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即可求得數列的通項公式,利用裂項法即可求得前項和.(Ⅲ)先求得的取值范圍,結合不等式,即可求得的取值范圍.【詳解】(Ⅰ)因為正項數列的前項和為,且化簡可得由遞推公式可得兩式相減可得,變形可得即,由正項等比數列可得所以而當時,解得所以數列是以為首項,以為公差的等差數列因而(Ⅱ)由(Ⅰ)可知則代入中可得所以(Ⅲ)由(Ⅱ)可知則,所以數列為單調遞增數列,則且當時,,即所以因為對一切的恒成立則滿足,解不等式組可得即實數的取值范圍為【點睛】本題考查了等差數列通項公式與求和公式的應用,裂項求和法的應用,數列的單調性與不等式關系,綜合性強,屬于中檔題.19、(1);(2)【解析】

(1)由向量垂直的坐標運算可得,再求解即可;(2)利用三角函數誘導公式可得原式,再構造齊次式求解即可.【詳解】解:(1)因為,所以,因為,,所以,即,故.(2).【點睛】本題考查了向量垂直的坐標運算,重點考查了三角函數誘導公式及構造齊次式求值,屬中檔題.20、(1);(2).【解析】

(1)寫出從5個學生中任選2個人的所有等可能基本事件,計算事件2個人都是女生所含的基本事件個數;(2)寫出從男生和女生中各選1個人的所有等可能基本事件,計算事件2個人包括,但不包括所含的基本事件個數.【詳解】(1)由題意知,從5個學生中任選2個人,其所有等可能基本事件有:,,,,,,,,,,共10個,選2個人都是女生的事件所包含的基本事件有,,,共3個,則所求事件的概率為.(2)從男生和女生中各選1個人,其所有可能的結果組成的基本事件有,,,,,,共6個,包括,但不包括的事件所包含的基本事件有,,共2個,則所求事件的概率為.【點睛】本題的兩問均考查利用古典概型的概率計算公式,求事件發生的概率,求解過程中要求列出所有等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論