




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年廣東省北江實驗校中考五模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.2.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃3.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.4.在“朗讀者”節目的影響下,某中學開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學生讀書情況,隨機調查了八年級50名學生讀書的冊數,統計數據如下表所示:冊數01234人數41216171關于這組數據,下列說法正確的是()A.中位數是2 B.眾數是17 C.平均數是2 D.方差是25.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數是(
)A.9分B.8分C.7分D.6分6.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.7.某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設每天應多做x件才能按時交貨,則x應滿足的方程為()A. B.C. D.8.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.149.計算的正確結果是()A. B.- C.1 D.﹣110.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側面積為()A. B.π C.50 D.50π11.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.812.如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于實數a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.14.如圖,在邊長為1的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.15.如圖,在中,AB為直徑,點C在上,的平分線交于D,則______16.解不等式組請結合題意填空,完成本題的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在數軸上表示出來;(4)原不等式組的解集為___________.17.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)18.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當AB=5cm,AC=12cm時,求線段PC的長.20.(6分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.21.(6分)如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF,求證:AB∥DE.22.(8分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.23.(8分)某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完,商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元.商場第一次購入的空調每臺進價是多少元?商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?24.(10分)的除以20與18的差,商是多少?25.(10分)如圖,已知D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE.求證:BC=AE.26.(12分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數量關系是;(2)如圖2,將△DHE繞點D順時針旋轉,當點E、H、C在一條直線上時,求證:AE+EH=CH.27.(12分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數y=的圖象經過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經過的路徑長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程解答即可.2、B【解析】
求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉化為減法運算,列算式計算即可.【詳解】3-(-4)=3+4=7℃.
故選B.3、A【解析】
根據銳角三角函數的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數的定義,熟記銳角三角函數的定義內容是解題的關鍵.4、A【解析】試題解析:察表格,可知這組樣本數據的平均數為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數據中,3出現了17次,出現的次數最多,∴這組數據的眾數是3;∵將這組樣本數據按從小到大的順序排列,其中處于中間的兩個數都是2,∴這組數據的中位數為2,故選A.考點:1.方差;2.加權平均數;3.中位數;4.眾數.5、C【解析】分析:根據中位數的定義,首先將這組數據按從小到大的順序排列起來,由于這組數據共有7個,故處于最中間位置的數就是第四個,從而得出答案.詳解:將這組數據按從小到大排列為:6<7<7<7<8<9<9,故中位數為:7分,故答案為:C.點睛:本題主要考查中位數,解題的關鍵是掌握中位數的定義:將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.6、C【解析】
設I的邊長為x,根據“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應用,能夠根據題意列出方程是解題的關鍵.7、D【解析】
因客戶的要求每天的工作效率應該為:(48+x)件,所用的時間為:,根據“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.8、A【解析】
利用平行四邊形的性質即可解決問題.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【點睛】題考查了平行四邊形的性質和三角形周長的計算,平行四邊形的性質有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.9、D【解析】
根據有理數加法的運算方法,求出算式的正確結果是多少即可.【詳解】原式故選:D.【點睛】此題主要考查了有理數的加法的運算方法,要熟練掌握,解答此題的關鍵是要明確:①同號相加,取相同符號,并把絕對值相加.②絕對值不等的異號加減,取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值.互為相反數的兩個數相加得1.③一個數同1相加,仍得這個數.10、A【解析】
根據新定義得到扇形的弧長為5,然后根據扇形的面積公式求解.【詳解】解:圓錐的側面積=?5?5=.故選A.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.11、D【解析】分析:根據二元一次方程組的解,直接代入構成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數是解題關鍵,比較簡單,是常考題型.12、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數,∴自變量x的系數是固定值,∴這個函數圖象肯定是一次函數圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
根據新定義運算對式子進行變形得到關于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【點睛】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據題意正確得到方程是解題的關鍵.14、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點睛】此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.15、1【解析】
由AB為直徑,得到,由因為CD平分,所以,這樣就可求出.【詳解】解:為直徑,
,
又平分,
,
.
故答案為1.【點睛】本題考查了圓周角定理:在同圓和等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半同時考查了直徑所對的圓周角為90度.16、(1)x<1;(2)x≥﹣2;(1)見解析;(4)﹣2≤x<1;【解析】
(1)先移項,再合并同類項,求出不等式1的解集即可;(2)先去分母、移項,再合并同類項,求出不等式2的解集即可;(1)把兩不等式的解集在數軸上表示出來即可;(4)根據數軸上不等式的解集,求出其公共部分即可.【詳解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在數軸上表示出來如下:(4)原不等式組的解集為:﹣2≤x<1,故答案為:x<1、x≥﹣2、﹣2≤x<1.【點睛】本題主要考查一元一次不等式組的解法及在數軸上的表示。17、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.18、【解析】
仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點睛】本題考查了切線的判定、相似三角形的判定與性質等,熟練掌握切線的判定方法、相似三角形的判定與性質定理是解題的關鍵.20、(1)①;②n≤1;(2)ac≤1,見解析.【解析】
(1)①△=1求解b=1,將點(3,1)代入平移后解析式,即可;②頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯立方程組即可求n的范圍;(2)將點(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點為(1,)關于P(1,n)對稱點的坐標是(﹣1,2n﹣),∴關于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【點睛】本題考查二次函數的圖象及性質;掌握二次函數圖象平移時改變位置,而a的值不變是解題的關鍵.21、詳見解析.【解析】試題分析:利用SSS證明△ABC≌△DEF,根據全等三角形的性質可得∠B=∠DEF,再由平行線的判定即可得AB∥DE.試題解析:證明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),則∠B=∠DEF,∴AB∥DE.考點:全等三角形的判定與性質.22、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】
(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意列出方程組求解,(2)①據題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數,所以x取34,y取最大值,(3)據題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數,∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數量滿足33≤x≤70的整數時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據一次函數x值的增大而確定y值的增減情況.23、(1)2400元;(2)8臺.【解析】試題分析:(1)設商場第一次購入的空調每臺進價是x元,根據題目條件“商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元”列出分式方程解答即可;
(2)設最多將臺空調打折出售,根據題目條件“在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售”列出不等式并解答即可.試題解析:(1)設第一次購入的空調每臺進價是x元,依題意,得解得經檢驗,是原方程的解.答:第一次購入的空調每臺進價是2400元.(2)由(1)知第一次購入空調的臺數為24000÷2400=10(臺),第二次購入空調的臺數為10×2=20(臺).設第二次將y臺空調打折出售,由題意,得解得答:最多可將8臺空調打折出售.24、【解析】
根據題意可用乘的積除以20與18的差,所得的商就是所求的數,列式解答即可.【詳解】解:×÷(20﹣18)【點睛】考查有理數的混合運算,列出式子是解題的關鍵.25、見解析【解析】
證明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵,∴△ABC≌△DAE(ASA).∴BC=AE.【點睛】根據兩直線平行,內錯角相等求出∠CAB=∠ADE,然后利用“角邊角”證明△ABC和△DAE全等,再根據全等三角形對應邊相等證明即可.26、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據全等三角形的性質得到EM=EH,DM=DH,等量代換得到AM=CH,根據勾股定理即可得到結論;
(2)如圖2,根據菱形的性質得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質得到∠EDG=60°,推出△DAE≌△DCG,根據全等三角形的性質即可得到結論.詳解:(1)EH2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文課上的一次小游戲記事作文9篇
- 媒體投放與傳播戰略合作協議具體內容書
- 2025年電工特種作業操作證考試試卷(高級)案例分析
- 2025年征信考試題庫:征信數據分析挖掘信用風險分析試題
- 2025年西式烹調師高級(特色料理制作與市場推廣)職業技能鑒定試卷
- 健康生活體驗中心商業合作協議
- 小熊的故事動物童話作文7篇
- 2025年鍋爐操作員特種作業操作證考試試卷(節能環保篇)
- 2025年海南省事業單位招聘考試綜合類專業技能試題集
- 2025年初中歷史七年級下冊階段檢測試卷模擬試題及答案
- 第一套路面工程考試試題及答案
- 4配電柜安全風險點告知牌
- 旋挖機操作手知識試卷含參考答案
- GB∕T 22590-2021 軋鋼加熱爐用耐火澆注料
- 研發部程序文件bom管理
- 大件運輸管理制度
- Q∕GDW 11445-2015 國家電網公司管理信息系統安全基線要求
- 材料科學基礎 第2章 晶體結構
- 結構化思維PPT通用課件
- 新標準大學英語(第二版)綜合教程2 Unit 5 A篇練習答案及課文翻譯
- 股靜脈采血學習教案
評論
0/150
提交評論