2022屆河南省洛陽市澗西區東升二中學中考聯考數學試卷含解析_第1頁
2022屆河南省洛陽市澗西區東升二中學中考聯考數學試卷含解析_第2頁
2022屆河南省洛陽市澗西區東升二中學中考聯考數學試卷含解析_第3頁
2022屆河南省洛陽市澗西區東升二中學中考聯考數學試卷含解析_第4頁
2022屆河南省洛陽市澗西區東升二中學中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆河南省洛陽市澗西區東升二中學中考聯考數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知反比例函數下列結論正確的是()A.圖像經過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<12.如圖所示的圖形為四位同學畫的數軸,其中正確的是()A. B.C. D.3.關于2、6、1、10、6的這組數據,下列說法正確的是()A.這組數據的眾數是6 B.這組數據的中位數是1C.這組數據的平均數是6 D.這組數據的方差是104.實數的相反數是()A.- B. C. D.5.對于代數式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④6.不等式2x﹣1<1的解集在數軸上表示正確的是()A. B.C. D.7.估計的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間8.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y9.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關于OE所在直線對稱D.O、E兩點關于CD所在直線對稱10.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.化簡:÷=_____.12.化簡:=.13.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉得到△PDE(點C、Q分別與點D、E對應),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.14.請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.A.如圖,在平面直角坐標系中,點的坐標為,沿軸向右平移后得到,點的對應點是直線上一點,則點與其對應點間的距離為__________.B.比較__________的大小.15.已知函數y=-1,給出一下結論:①y的值隨x的增大而減小②此函數的圖形與x軸的交點為(1,0)③當x>0時,y的值隨x的增大而越來越接近-1④當x≤時,y的取值范圍是y≥1以上結論正確的是_________(填序號)16.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______17.圖甲是小明設計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm三、解答題(共7小題,滿分69分)18.(10分)為了傳承中華優秀傳統文化,市教育局決定開展“經典誦讀進校園”活動,某校團委組織八年級100名學生進行“經典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統計圖表.組別分數段頻次頻率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08請根據所給信息,解答以下問題:(1)表中a=______,b=______;(2)請計算扇形統計圖中B組對應扇形的圓心角的度數;(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.19.(5分)如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、點B、點C均落在格點上.(I)計算△ABC的邊AC的長為_____.(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).20.(8分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.若將這種水果每斤的售價降低x元,則每天的銷售量是斤(用含x的代數式表示);銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?21.(10分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.22.(10分)如圖,已知反比例函數y=的圖象與一次函數y=x+b的圖象交于點A(1,4),點B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.23.(12分)△ABC在平面直角坐標系中的位置如圖所示.畫出△ABC關于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;觀察△A1B1C1和△A2B2C2,它們是否關于某條直線對稱?若是,請在圖上畫出這條對稱軸.24.(14分)從2017年1月1日起,我國駕駛證考試正式實施新的駕考培訓模式,新規定C2駕駛證的培訓學時為40學時,駕校的學費標準分不同時段,普通時段a元/學時,高峰時段和節假日時段都為b元/學時.(1)小明和小華都在此駕校參加C2駕駛證的培訓,下表是小明和小華的培訓結算表(培訓學時均為40),請你根據提供的信息,計算出a,b的值.學員培訓時段培訓學時培訓總費用小明普通時段206000元高峰時段5節假日時段15小華普通時段305400元高峰時段2節假日時段8(2)小陳報名參加了C2駕駛證的培訓,并且計劃學夠全部基本學時,但為了不耽誤工作,普通時段的培訓學時不會超過其他兩個時段總學時的,若小陳普通時段培訓了x學時,培訓總費用為y元①求y與x之間的函數關系式,并確定自變量x的取值范圍;②小陳如何選擇培訓時段,才能使得本次培訓的總費用最低?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:直接利用反比例函數的性質進而分析得出答案.詳解:A.反比例函數y=,圖象經過點(﹣1,﹣1),故此選項錯誤;B.反比例函數y=,圖象在第一、三象限,故此選項正確;C.反比例函數y=,每個象限內,y隨著x的增大而減小,故此選項錯誤;D.反比例函數y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數的性質,正確掌握反比例函數的性質是解題的關鍵.2、D【解析】

根據數軸三要素:原點、正方向、單位長度進行判斷.【詳解】A選項圖中無原點,故錯誤;B選項圖中單位長度不統一,故錯誤;C選項圖中無正方向,故錯誤;D選項圖形包含數軸三要素,故正確;故選D.【點睛】本題考查數軸的畫法,熟記數軸三要素是解題的關鍵.3、A【解析】

根據方差、算術平均數、中位數、眾數的概念進行分析.【詳解】數據由小到大排列為1,2,6,6,10,它的平均數為(1+2+6+6+10)=5,數據的中位數為6,眾數為6,數據的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術平均數;中位數;眾數.4、A【解析】

根據相反數的定義即可判斷.【詳解】實數的相反數是-故選A.【點睛】此題主要考查相反數的定義,解題的關鍵是熟知相反數的定義即可求解.5、A【解析】設(1)如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應的y值相等,因此m、n、s中至少有兩個數是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c,故③在結論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結論不一定成立.綜上所述,四種說法中正確的是③.故選A.6、D【解析】

先求出不等式的解集,再在數軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數化為1得,x<1.在數軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.7、C【解析】

根據,可以估算出位于哪兩個整數之間,從而可以解答本題.【詳解】解:∵即

故選:C.【點睛】本題考查估算無理數的大小,解題的關鍵是明確估算無理數大小的方法.8、C【解析】

原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.9、D【解析】試題分析:A、連接CE、DE,根據作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關于OE所在直線對稱,正確,不符合題意.D、根據作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關于CD所在直線不對稱,錯誤,符合題意.故選D.10、C【解析】

根據有理數的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數的乘方及解一元二次方程-直接開平方法.二、填空題(共7小題,每小題3分,滿分21分)11、m【解析】解:原式=?=m.故答案為m.12、2【解析】

根據算術平方根的定義,求數a的算術平方根,也就是求一個正數x,使得x2=a,則x就是a的算術平方根,特別地,規定0的算術平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術平方根,熟記定義是關鍵.13、1【解析】

連接AD,根據PQ∥AB可知∠ADQ=∠DAB,再由點D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據勾股定理可知,AQ=11-4x,故可得出x的值,進而得出結論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,

∴CP=3x=1;故答案為:1.【點睛】本題考查平行線的性質、旋轉變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質等知識,解題的關鍵是學會利用參數解決問題,屬于中考常考題型.14、5>【解析】

A:根據平移的性質得到OA′=OA,OO′=BB′,根據點A′在直線求出A′的橫坐標,進而求出OO′的長度,最后得到BB′的長度;B:根據任意角的正弦值等于它余角的余弦值將sin53°化為cos37°,再進行比較.【詳解】A:由平移的性質可知,OA′=OA=4,OO′=BB′.因為點A′在直線上,將y=4代入,得到x=5.所以OO′=5,又因為OO′=BB′,所以點B與其對應點B′間的距離為5.故答案為5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根據正切函數與余弦函數圖像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【點睛】本題主要考查圖形的平移、一次函數的解析式和三角函數的圖像,熟練掌握這些知識并靈活運用是解答的關鍵.15、②③【解析】(1)因為函數的圖象有兩個分支,在每個分支上y隨x的增大而減小,所以結論①錯誤;(2)由解得:,∴的圖象與x軸的交點為(1,0),故②中結論正確;(3)由可知當x>0時,y的值隨x的增大而越來越接近-1,故③中結論正確;(4)因為在中,當時,,故④中結論錯誤;綜上所述,正確的結論是②③.故答案為:②③.16、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.17、【解析】試題分析:根據,EF=4可得:AB=和BC的長度,根據陰影部分的面積為54可得陰影部分三角形的高,然后根據菱形的性質可以求出小菱形的邊長為,則菱形的周長為:×4=.考點:菱形的性質.三、解答題(共7小題,滿分69分)18、(1)0.3,45;(2)108°;(3).【解析】

(1)首先根據A組頻數及其頻率可得總人數,再利用頻數、頻率之間的關系求得a、b;(2)B組的頻率乘以360°即可求得答案;(2)畫樹形圖后即可將所有情況全部列舉出來,從而求得恰好抽中者兩人的概率;【詳解】(1)本次調查的總人數為17÷0.17=100(人),則a==0.3,b=100×0.45=45(人).故答案為0.3,45;(2)360°×0.3=108°.答:扇形統計圖中B組對應扇形的圓心角為108°.(3)將同一班級的甲、乙學生記為A、B,另外兩學生記為C、D,畫樹形圖得:∵共有12種等可能的情況,甲、乙兩名同學都被選中的情況有2種,∴甲、乙兩名同學都被選中的概率為=.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小【解析】

(1)利用勾股定理計算即可;(2)作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.【詳解】解:(1)AC==.故答案為.(2)作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.

故答案為作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.【點睛】本題考查作圖-應用與設計,勾股定理,軸對稱-最短問題,垂線段最短等知識,解題的關鍵是學會利用軸對稱,根據垂線段最短解決最短問題,屬于中考常考題型.20、(1)100+200x;(2)1.【解析】試題分析:(1)銷售量=原來銷售量﹣下降銷售量,列式即可得到結論;(2)根據銷售量×每斤利潤=總利潤列出方程求解即可得到結論.試題解析:(1)將這種水果每斤的售價降低x元,則每天的銷售量是100+×20=100+200x斤;(2)根據題意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:張阿姨需將每斤的售價降低1元.考點:1.一元二次方程的應用;2.銷售問題;3.綜合題.21、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或對角的位置上,通過證明四邊形是平行四邊形達到上述目的.22、(1)-1;(2);(3)x>1或﹣4<x<0.【解析】

(1)把A點坐標分別代入反比例函數與一次函數解析式,求出k和b的值,把B點坐標代入反比例函數解析式求出n的值即可;(2)設直線y=x+3與y軸的交點為C,由S△AOB=S△AOC+S△BOC,根據A、B兩點坐標及C點坐標,利用三角形面積公式即可得答案;(3)利用函數圖像,根據A、B兩點坐標即可得答案.【詳解】(1)把A點(1,4)分別代入反比例函數y=,一次函數y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵點B(﹣4,n)也在反比例函數y=的圖象上,∴n==﹣1;(2)如圖,設直線y=x+3與y軸的交點為C,∵當x=0時,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根據圖象可知:當x>1或﹣4<x<0時,一次函數值大于反比例函數值.【點睛】本題主要考查了待定系數法求反比例函數與一次函數的解析式和反比例函數y=中k的幾何意義,這里體現了數形結合的思想.23、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論