




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南通市崇川區2024屆十校聯考最后數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°2.如圖,點A所表示的數的絕對值是()A.3 B.﹣3 C. D.3.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.4.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°5.如圖,四個有理數在數軸上的對應點M,P,N,Q,若點M,N表示的有理數互為相反數,則圖中表示絕對值最小的數的點是()A.點M B.點N C.點P D.點Q6.如圖,下列各數中,數軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根7.下列選項中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=18.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數為()A.45° B.60° C.70° D.90°9.實數a,b在數軸上的位置如圖所示,以下說法正確的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|10.若一組數據1、、2、3、4的平均數與中位數相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.5二、填空題(共7小題,每小題3分,滿分21分)11.方程的解是_____.12.如圖,在△ABC中,∠ABC=90°,AB=CB,F為AB延長線上一點,點E在BC上,且AE=CF,若∠CAE=32°,則∠ACF的度數為__________°.13.當a,b互為相反數,則代數式a2+ab﹣2的值為_____.14.對于任意不相等的兩個實數,定義運算※如下:※=,如3※2==.那么8※4=.15.計算(2a)3的結果等于__.16.因式分解:a3-a=______.17.因式分解:_________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC,∠BAC=120°,EF為AB的垂直平分線,交BC于點F,交AB于點E.求證:FC=2BF.19.(5分)“食品安全”受到全社會的廣泛關注,我區兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面的兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.20.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發,在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發,沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.21.(10分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.22.(10分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.23.(12分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.24.(14分)拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發生改變時,請說明直線QH過定點,并求定點坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.2、A【解析】
根據負數的絕對值是其相反數解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關鍵是根據負數的絕對值是其相反數解答.3、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.4、A【解析】
∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.5、C【解析】試題分析:∵點M,N表示的有理數互為相反數,∴原點的位置大約在O點,∴絕對值最小的數的點是P點,故選C.考點:有理數大小比較.6、C【解析】
解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,
故根據數軸可知,
故選C7、A【解析】
根據要證明一個結論不成立,可以通過舉反例的方法來證明一個命題是假命題.由此即可解答.【詳解】∵當a=﹣2,b=1時,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點睛】本題考查了命題與定理,要說明數學命題的錯誤,只需舉出一個反例即可,這是數學中常用的一種方法.8、D【解析】已知△ABC繞點A按逆時針方向旋轉l20°得到△AB′C′,根據旋轉的性質可得∠BAB′=∠CAC′=120°,AB=AB′,根據等腰三角形的性質和三角形的內角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.9、D【解析】
根據圖形可知,a是一個負數,并且它的絕對是大于1小于2,b是一個正數,并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數a為負數,實數b為正數,但表示它們的點到原點的距離不相等,所以它們不互為相反數,和不為0,故A錯誤;B選項:由圖中信息可知,實數a為負數,實數b為正數,而正數都大于負數,故B錯誤;C選項:由圖中信息可知,實數a為負數,實數b為正數,而異號兩數相乘積為負,負數都小于0,故C錯誤;D選項:由圖中信息可知,表示實數a的點到原點的距離大于表示實數b的點到原點的距離,而在數軸上表示一個數的點到原點的距離越遠其絕對值越大,故D正確.∴選D.10、C【解析】
解:這組數據1、a、2、1、4的平均數為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數據從小到大的順序排列后為a,1,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數據從小到大的順序排列后為1,a,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數據從小到大的順序排列后1,2,a,1,4,中位數是a,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數據從小到大的順序排列后為1,2,1,a,4,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數據從小到大的順序排列為1,2,1,4,a,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【點睛】本題考查中位數;算術平均數.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】,,x=1,代入最簡公分母,x=1是方程的解.12、58【解析】
根據HL證明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【詳解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△CBF和Rt△ABE中∴Rt△CBF≌Rt△ABE(HL),∴∠FCB=∠EAB,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案為58【點睛】本題考查了全等三角形的性質和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質是全等三角形的對應邊相等,對應角相等.13、﹣1.【解析】分析:由已知易得:a+b=0,再把代數式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數,∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點睛:知道“互為相反數的兩數的和為0”及“能夠把a1+ab-1化為為a(a+b)-1”是正確解答本題的關鍵.14、【解析】
根據新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.15、8【解析】試題分析:根據冪的乘方與積的乘方運算法則進行計算即可考點:(1)、冪的乘方;(2)、積的乘方16、a(a-1)(a+1)【解析】分析:先提取公因式a,再對余下的多項式利用平方差公式繼續分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).17、【解析】
提公因式法和應用公式法因式分解.【詳解】解:.故答案為:【點睛】本題考查因式分解,要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續分解因式.三、解答題(共7小題,滿分69分)18、見解析【解析】
連接AF,結合條件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性質可得到AF=BF=CF,可證得結論.【詳解】證明:連接AF,∵EF為AB的垂直平分線,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【點睛】本題主要考查垂直平分線的性質及等腰三角形的性質,掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關鍵.19、(1)60,1°.(2)補圖見解析;(3)【解析】
(1)根據了解很少的人數和所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統計圖;(3)根據題意先畫出樹狀圖,再根據概率公式即可得出答案.【詳解】(1)接受問卷調查的學生共有30÷50%=60(人),扇形統計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統計圖、扇形統計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據題意求出總人數是解題的關鍵;概率=所求情況數與總情況數之比.20、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據三角形面積公式可得結論;(2)分兩種情況:①當Q在邊AC上運動時,②當Q在邊AB上運動時;分別根據勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關系式;(3)分別當⊙O與BC相切時、當⊙O與AB相切時,當⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當Q在邊AC上運動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當Q在邊AB上運動時,2<t<4如圖2,設⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當⊙O與AC相切時,如圖3,設切點為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點睛】本題是圓的綜合題,涉及了三角函數、勾股定理、圓的面積、切線的性質等知識,綜合性較強,有一定的難度,以點P和Q運動為主線,畫出對應的圖形是關鍵,注意數形結合的思想.21、(1)①6,②2或4,③1<m<4;(2)或.【解析】
(1)①根據“折線距離”的定義直接列式計算;②根據“折線距離”的定義列出方程,求解即可;③根據“折線距離”的定義列出式子,可知其幾何意義是數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3.(2)由題意可知,根據圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3,所以1<m<4(2)設E(x,y),則,如圖,若點E在⊙F上,則.【點睛】本題主要考查坐標與圖形,正確理解新定義及其幾何意義,利用數形結合的思想思考問題是解題關鍵.22、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數;由旋轉的性質得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數綜合題;2.壓軸題;3.探究型;4.最值問題.23、(1)-7;(2),.【解析】
(1)原式第一項利用算術平方根定義計算,第二項利用特殊角的三角函數值計算,第三項利用零指數冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結果;
(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,利用非負數的性質求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數的運算、非負數的性質與分式的化簡求值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年煤炭清潔高效燃燒技術革新研究報告
- 2025年康復醫療服務體系與康復醫療康復康復訓練設備升級運營模式研究報告
- 新能源汽車充電設施投資策略與市場潛力研究報告
- 新藥研發新方向:2025年靶點發現與驗證技術臨床轉化策略研究進展
- 2025年金融科技創新在普惠金融中的應用案例研究
- 疫情預防心理健康教育班會
- 飲食安全衛生常識
- 透析患者的病情觀察和護理
- 安全工作課件背景
- 思維導圖手工篇-顏紅寶
- 小學新課標《義務教育數學課程標準(2022年版)》新修訂解讀課件
- 七年級下學期語文5月月考試卷
- 2024年樂山市市級事業單位選調工作人員真題
- 社區衛生服務與試題及答案
- 湖南省2024年對口升學考試計算機綜合真題試卷
- 江蘇省南京市(2024年-2025年小學六年級語文)統編版期末考試(下學期)試卷及答案
- 中醫適宜技術-中藥熱奄包
- 材料力學第4版單輝祖習題答案
- DB52∕T 046-2018 貴州省建筑巖土工程技術規范
- 真空斷路器課件
- 樓面板靜載試驗檢測報告
評論
0/150
提交評論