




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省華南師范大附屬中學2023年數學九年級第一學期期末調研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.若二次函數y=ax2+bx+c的圖象經過點(﹣1,0)和(3,0),則方程ax2+bx+c=0的解為()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=12.拋物線y=x2+6x+9與x軸交點的個數是()A.0 B.1 C.2 D.33.如圖,AB是⊙O的直徑,點C和點D是⊙O上位于直徑AB兩側的點,連接AC,AD,BD,CD,若⊙O的半徑是13,BD=24,則sin∠ACD的值是()A. B. C. D.4.點、都在反比例函數的圖象上,則、的大小關系是()A. B. C. D.不能確定5.設,,是拋物線上的三點,則的大小關系為()A. B. C. D.6.反比例函數y=和一次函數y=kx-k在同一坐標系中的圖象大致是()A. B. C. D.7.函數和在同一坐標系中的圖象大致是()A. B. C. D.8.如圖,點E、F分別為正方形ABCD的邊BC、CD上一點,AC、BD交于點O,且∠EAF=45°,AE,AF分別交對角線BD于點M,N,則有以下結論:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上結論中,正確的個數有()個.A.1 B.2 C.3 D.49.如圖,AB為⊙O的直徑,點C在⊙O上,若,,則的長為()A. B. C. D.10.如圖,在中,D在AC邊上,,O是BD的中點,連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:311.把拋物線y=ax2+bx+c的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為y=x2-2x+3,則b+c的值為()A.9 B.12 C.-14 D.1012.如圖的幾何體由6個相同的小正方體搭成,它的主視圖是()A. B. C. D.二、填空題(每題4分,共24分)13.在一個不透明的袋子中有5個除顏色外完全相同的小球,其中綠球個,紅球個,摸出一個球不放回,混合均勻后再摸出一個球,兩次都摸到紅球的概率是________.14.一個質地均勻的小正方體,六個面分別標有數字“”“”“”“”“”“”,隨機擲一次小正方體,朝上一面的數字是奇數的概率是_____.15.如圖,在由邊長為1的小正方形組成的網格中.點A,B,C,D都在這些小正方形的格點上,AB、CD相交于點E,則sin∠AEC的值為_____.16.若線段AB=6cm,點C是線段AB的一個黃金分割點(AC>BC),則AC的長為cm(結果保留根號).17.△ABC中,∠C=90°,AC=6,BC=8,則sin∠A的值為__________.18.如圖,要測量池塘兩岸相對的A,B兩點間的距離,可以在池塘外選一點C,連接AC,BC,分別取AC,BC的中點D,E,測得DE=50m,則AB的長是_______m.三、解答題(共78分)19.(8分)某小區開展了“行車安全,方便居民”的活動,對地下車庫作了改進.如圖,這小區原地下車庫的入口處有斜坡AC長為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現將斜坡的坡角改為13°,即∠ADC=13°(此時點B、C、D在同一直線上).(1)求這個車庫的高度AB;(2)求斜坡改進后的起點D與原起點C的距離(結果精確到0.1米).(參考數據:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)20.(8分)計算:sin45°+2cos30°﹣tan60°21.(8分)如圖,直線與⊙相離,于點,與⊙相交于點,.是直線上一點,連結并延長交⊙于另一點,且.(1)求證:是⊙的切線;(2)若⊙的半徑為,求線段的長.22.(10分)已知:如圖,在中,是邊上的高,且,,,求的長.23.(10分)為滿足市場需求,某超市在五月初五“端午節”來臨前夕,購進一種品牌粽子,每盒進價是40元,超市規定每盒售價不得少于45元.根據以往銷售經驗發現:當售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.(1)試求出每天的銷售量y(盒)與每盒售價(元)之間的函數關系式;(2)當每盒售價定為多少元時,每天銷售的利潤(元)最大?最大利潤是多少?24.(10分)已知為直角三角形,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.(1)求點A的坐標(用m表示);(2)求拋物線的解析式;(3)設點Q為拋物線上點P至點B之間的一動點,連結PQ并延長交BC于點E,連結BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.25.(12分)如圖,在四邊形中,,.點在上,.(1)求證:;(2)若,,,求的長.26.如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4m,B,C在同一水平面上.(1)求斜坡AB的水平寬度BC;(2)矩形DEFG為長方形貨柜的側面圖,其中DE=2.5m,EF=2m.將貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高.(≈2.236,結果精確到0.1m)
參考答案一、選擇題(每題4分,共48分)1、C【分析】利用拋物線與x軸的交點問題確定方程ax2+bx+c=0的解.【詳解】解:∵二次函數y=ax2+bx+c的圖象經過點(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解為x1=﹣1,x2=1.故選:C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.2、B【分析】根據題意,求出b2﹣4ac與0的大小關系即可判斷.【詳解】∵b2﹣4ac=36﹣4×1×9=0∴二次函數y=x2+6x+9的圖象與x軸有一個交點.故選:B.【點睛】此題考查的是求二次函數與x軸的交點個數,掌握二次函數與x軸的交點個數和b2﹣4ac的符號關系是解決此題的關鍵.3、D【解析】首先利用直徑所對的圓周角為90°得到△ABD是直角三角形,然后利用勾股定理求得AD邊的長,然后求得∠B的正弦即可求得答案.【詳解】∵AB是直徑,∴∠ADB=90°,∵⊙O的半徑是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B=∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故選D.【點睛】本題考查了圓周角定理及解直角三角形的知識,解題的關鍵是能夠得到直角三角形并利用銳角三角函數求得一個銳角的正弦值,難度不大.4、A【分析】根據反比例函數的性質,圖象在二、四象限,在雙曲線的同一支上,y隨x的增大而增大,則-3<-1<0,可得.【詳解】解:∵k=-1<0,
∴圖象在二、四象限,且在雙曲線的同一支上,y隨x增大而增大
∵-3<-1<0
∴y1<y2,
故選:A.【點睛】本題考查了反比例函數圖象上點的坐標特征,熟練掌握反比例函數的性質是解題的關鍵.5、D【分析】根據二次函數的性質得到拋物線的開口向上,對稱軸為直線x=-2,然后根據三個點離對稱軸的遠近判斷函數值的大小.【詳解】,∵a=1>0,∴拋物線開口向上,對稱軸為直線x=-2,∵離直線x=-2的距離最遠,離直線x=-2的距離最近,∴.故選:D.【點睛】本題考查了二次函數圖象上點的坐標特征:二次函數圖象上點的坐標滿足其解析式.也考查了二次函數的性質.6、C【解析】由于本題不確定k的符號,所以應分k>0和k<0兩種情況分類討論,針對每種情況分別畫出相應的圖象,然后與各選項比較,從而確定答案.【詳解】(1)當k>0時,一次函數y=kx-k
經過一、三、四象限,反比例函數經過一、三象限,如圖所示:(2)當k<0時,一次函數y=kx-k經過一、二、四象限,反比例函數經過二、四象限.如圖所示:故選C.【點睛】本題考查了反比例函數、一次函數的圖象.靈活掌握反比例函數的圖象性質和一次函數的圖象性質是解決問題的關鍵,在思想方法方面,本題考查了數形結合思想、分類討論思想.7、D【解析】試題分析:當k<0時,反比例函數過二、四象限,一次函數過一、二、四象限;當k>0時,反比例函數過一、三象限,一次函數過一、三、四象限.故選D.考點:1.反比例函數的圖象;2.一次函數的圖象.8、D【解析】如圖,把△ADF繞點A順時針旋轉90°得到△ABH,由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據全等三角形的性質得到EH=EF,所以∠ANM=∠AEB,則可求得②正確;根據三角形的外角的性質得到①正確;根據相似三角形的判定定理得到△OAM∽△DAF,故③正確;根據相似三角形的性質得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根據勾股定理得到AE=AN,再根據相似三角形的性質得到EF=MN,于是得到S△AEF=2S△AMN.故④正確.【詳解】如圖,把△ADF繞點A順時針旋轉90°得到△ABH由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正確∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正確,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正確連接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正確故選D.【點睛】此題考查相似三角形全等三角形的綜合應用,熟練掌握相似三角形,全等三角形的判定定理是解決此類題的關鍵.9、B【分析】直接利用等腰三角形的性質得出∠A的度數,再利用圓周角定理得出∠BOC的度數,再利用弧長公式求出答案.【詳解】解:∵∠OCA=50°,OA=OC,
∴∠A=50°,
∴∠BOC=2∠A=100°,
∵AB=4,
∴BO=2,∴的長為:故選B.【點睛】此題主要考查了弧長公式應用以及圓周角定理,正確得出∠BOC的度數是解題關鍵.10、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關系可求出的比.【詳解】解:如圖,過O作,交AC于G,∵O是BD的中點,∴G是DC的中點.又,設,又,,故選B.【點睛】考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.11、B【解析】y=x2-2x+3=(x-1)2+2,將其向上平移2個單位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3個單位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故選B.12、A【分析】根據從正面看得到的視圖是主視圖,可得答案.【詳解】從正面看有三列,從左起第一列有兩個正方形,第二列有兩個正方形,第三列有一個正方形,故A符合題意,故選A.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的視圖是主視圖.二、填空題(每題4分,共24分)13、【分析】列舉出所有情況,看兩次都摸到紅球的情況占總情況的多少即可.【詳解】畫樹狀圖圖如下:∴一共有20種情況,有6種情況兩次都摸到紅球,∴兩次都摸到紅球的概率是.故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.14、.【解析】直接利用概率求法進而得出答案.【詳解】一個質地均勻的小正方體,六個面分別標有數字“”“”“”“”“”“”,隨機擲一次小正方體,朝上一面的數字是奇數的概率是:.故答案為:.【點睛】此題主要考查了概率公式,正確掌握概率公式是解題關鍵.15、【分析】通過作垂線構造直角三角形,由網格的特點可得Rt△ABD是等腰直角三角形,進而可得Rt△ACF是等腰直角三角形,求出CF,再根據△ACE∽△BDE的相似比為1:3,根據勾股定理求出CD的長,從而求出CE,最后根據銳角三角函數的意義求出結果即可.【詳解】過點C作CF⊥AE,垂足為F,在Rt△ACD中,CD=,由網格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC?sin45°=,由AC∥BD可得△ACE∽△BDE,∴,∴CE=CD=,在Rt△ECF中,sin∠AEC=,故答案為:.【點睛】考查銳角三角函數的意義、直角三角形的邊角關系,作垂線構造直角三角形是解決問題常用的方法,借助網格,利用網格中隱含的邊角關系是解決問題的關鍵.16、3(﹣1)【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值()叫做黃金比.【詳解】根據黃金分割點的概念和AC>BC,得:AC=AB=×6=3(﹣1).故答案為:3(﹣1).17、【分析】根據勾股定理及三角函數的定義直接求解即可;【詳解】如圖,,∴sin∠A,故答案為:【點睛】本題考查了三角函數的定義及勾股定理,熟練掌握三角函數的定義是解題的關鍵.18、1【分析】先判斷出DE是△ABC的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半可得AB=2DE,問題得解.【詳解】∵點D,E分別是AC,BC的中點,∴DE是△ABC的中位線,∴AB=2DE=2×50=1米.故答案為1.【點睛】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,熟記定理并準確識圖是解題的關鍵.三、解答題(共78分)19、(1)這個車庫的高度AB為5米;(2)斜坡改進后的起點D與原起點C的距離為9.7米.【解析】(1)根據坡比可得=,利用勾股定理求出AB的長即可;(2)由(1)可得BC的長,由∠ADB的余切值可求出BD的長,進而求出CD的長即可.【詳解】(1)由題意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i==,設AB=5x,則BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:這個車庫的高度AB為5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC=,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改進后的起點D與原起點C的距離為9.7米.【點睛】此題主要考查了坡角的定義以、銳角的三角函數及勾股定理等知識,正確求出BC,BD的長是解題關鍵.20、1【分析】根據特殊角的三角函數值計算即可求出值.【詳解】解:原式=×+2×﹣=1.【點睛】本題考查了特殊角的三角函數值、二次根式的運算,解決本題的關鍵是熟練掌握特殊角的銳角函數值.21、(1)詳見解析;(2)【解析】(1)連結,則,,已知AB=AC,故,由可得,則,證得,即AB是⊙O的切線.(2)在直角三角形AOB中,OA=5,OB=3,可求得AB=AC=4.在直角三角形ACP中,由勾股定理可求得,過點O做OD⊥BC于點D,可得△ODP∽△CAP,則有,代入線段長度即可求得PD,進而利用垂徑定理求得BP.【詳解】(1)證明:如圖,連結,則,,∵,即,即故是⊙的切線;(2)由(1)知:而,由勾股定理,得:,過作于,則在和中,∽【點睛】本題考查了勾股定理,相似三角形的性質及判斷,垂徑定理,圓與直線的位置關系,解本題的關鍵是掌握常見求線段的方法,將知識點結合起來解題.22、【分析】根據直角三角形中,30°所對的直角邊等于斜邊的一半,解得AD的長,再由等腰直角三角形的兩條腰相等可得DC的長,最后根據勾股定理解題即可.【詳解】解:是邊上的高【點睛】本題考查含30°的直角三角形、等腰直角三角形的性質、勾股定理等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.23、(1)y=-20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元.【解析】(1)根據“當售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲的利潤×銷售量列出函數關系式整理,然后根據二次函數的最值問題解答即可.試題分析:試題解析:(1)由題意得,y=700-20(x-45)=-20x+1600;(2),∵x≥45,拋物線的開口向下,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元.考點:二次函數的應用.24、(1)(3﹣m,0);(2);(3)見解析【分析】(1)AO=AC?OC=m?3,用線段的長度表示點A的坐標;(2)是等腰直角三角形,因此也是等腰直角三角形,即可得到OD=OA,則D(0,m?3),又由P(1,0)為拋物線頂點,用待定系數法設頂點式,計算求解即可;(3)過點Q作QM⊥AC與點M,過點Q作QN⊥BC與點N,設點Q的坐標為,運用相似比求出FC,EC長的表達式,而AC=m,代入即可.【詳解】解:(1)由B(3,m)可知OC=3,BC=m,∴AC=BC=m,OA=m﹣3,∴點A的坐標為(3﹣m,0)(2)∵∠ODA=∠OAD=45°∴OD=OA=m﹣3,則點D的坐標是(0,m﹣3)又拋物線的頂點為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校消毒室管理制度
- 學校考勤組管理制度
- 學校預借款管理制度
- 學生洗浴卡管理制度
- 孩子托管班管理制度
- 安全環保處管理制度
- 定制式義齒管理制度
- 實訓室常規管理制度
- 實驗課常規管理制度
- 客房布草間管理制度
- 小學教育研究方法智慧樹知到期末考試答案章節答案2024年海南師范大學
- 柴油機外文文獻翻譯資料
- GB/T 10963.1-2020電氣附件家用及類似場所用過電流保護斷路器第1部分:用于交流的斷路器
- GA/T 1567-2019城市道路交通隔離欄設置指南
- RASS鎮靜評分表格
- 拆除新建橋梁鉆孔樁專項施工方案
- YY 0331-2006 脫脂棉紗布、脫脂棉粘膠混紡紗布的性能要求和試驗方法
- 切分軋制孔型設計
- 轉化國際食品法典(CAC)農藥最大殘留限量標準
- 胸腔鏡下三切口切除食管癌的手術配合
- 叉車日常維護保養檢查記錄表
評論
0/150
提交評論