2024屆湖南省茶陵三中數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
2024屆湖南省茶陵三中數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
2024屆湖南省茶陵三中數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
2024屆湖南省茶陵三中數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
2024屆湖南省茶陵三中數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省茶陵三中數(shù)學高一下期末綜合測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在圓心角為直角的扇形中,分別以為直徑作兩個半圓,在扇形內(nèi)隨機取一點,則此點取自陰影部分的概率是()A. B. C. D.2.在中,已知,則等于()A. B.C.或 D.或3.已知方程表示焦點在y軸上的橢圓,則m的取值范圍是()A. B. C. D.4.函數(shù)()的部分圖象如圖所示,若,且,則()A.1 B. C. D.5.若,則()A. B. C. D.6.某學校有教師200人,男學生1200人,女學生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,若女學生一共抽取了80人,則n的值為()A.193 B.192 C.191 D.1907.平面與平面平行的充分條件可以是()A.內(nèi)有無窮多條直線都與平行B.直線,,且直線a不在內(nèi),也不在內(nèi)C.直線,直線,且,D.內(nèi)的任何一條直線都與平行8.已知函數(shù)的部分圖象如圖所示,則此函數(shù)的解析式為()A. B.C. D.9.函數(shù)的最大值為()A. B. C. D.10.已知平面上四個互異的點、、、滿足:,則的形狀一定是()A.等邊三角形 B.直角三角形 C.等腰三角形 D.鈍角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.在行列式中,元素的代數(shù)余子式的值是________.12.在中,為邊中點,且,,則______.13.若數(shù)列的前4項分別是,則它的一個通項公式是______.14.某中學初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.15.函數(shù),的反函數(shù)為__________.16.甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨立射擊一次,均中靶的概率為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.正四棱錐的側(cè)棱長與底面邊長都相等,為中點.(1)求證:平面;(2)求異面直線與所成角的余弦值.18.在中,,點D在邊AB上,,且.(1)若的面積為,求CD;(2)設(shè),若,求證:.19.在中,角的對邊分別是,且滿足.(1)求角的大小;(2)若,邊上的中線的長為,求的面積.20.為了研究某種藥物,用小白鼠進行試驗,發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關(guān)系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:現(xiàn)對小白鼠同時進行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.21.已知集合.(Ⅰ)求;(Ⅱ)若集合,寫出集合的所有子集.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】試題分析:設(shè)扇形半徑為,此點取自陰影部分的概率是,故選B.考點:幾何概型.【方法點晴】本題主要考查幾何概型,綜合性較強,屬于較難題型.本題的總體思路較為簡單:所求概率值應為陰影部分的面積與扇形的面積之比.但是,本題的難點在于如何求陰影部分的面積,經(jīng)分析可知陰影部分的面積可由扇形面積減去以為直徑的圓的面積,再加上多扣一次的近似“橢圓”面積.求這類圖形面積應注意切割分解,“多還少補”.2、C【解題分析】在中,已知,由余弦定理,即,解得或,又,或,故選C.3、B【解題分析】

利用橢圓的性質(zhì)列出不等式求解即可.【題目詳解】方程1表示焦點在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【題目點撥】本題考查橢圓的方程及簡單性質(zhì)的應用,基本知識的考查.4、D【解題分析】

由三角函數(shù)的圖象求得,再根據(jù)三角函數(shù)的圖象與性質(zhì),即可求解.【題目詳解】由圖象可知,,即,所以,即,又因為,則,解得,又由,所以,所以,又因為,所以圖中的最高點坐標為.結(jié)合圖象和已知條件可知,所以,故選D.【題目點撥】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、D【解題分析】.分子分母同時除以,即得:.故選D.6、B【解題分析】

按分層抽樣的定義,按比例計算.【題目詳解】由題意,解得.故選:B.【題目點撥】本題考查分層抽樣,屬于簡單題.7、D【解題分析】

利用平面與平面平行的判定定理一一進行判斷,可得正確答案.【題目詳解】解:A選項,內(nèi)有無窮多條直線都與平行,并不能保證平面內(nèi)有兩條相交直線與平面平行,這無窮多條直線可以是一組平行線,故A錯誤;B選項,直線,,且直線a不在內(nèi),也不在內(nèi),直線a可以是平行平面與平面的相交直線,故不能保證平面與平面平行,故B錯誤;C選項,直線,直線,且,,當直線,同樣不能保證平面與平面平行,故C錯誤;D選項,內(nèi)的任何一條直線都與平行,則內(nèi)至少有兩條相交直線與平面平行,故平面與平面平行;故選:D.【題目點撥】本題主要考查平面與平面平行的判斷,解題時要認真審題,熟練掌握面與平面平行的判定定理,注意空間思維能力的培養(yǎng).8、B【解題分析】

由圖象可知,所以,又因為,所以所求函數(shù)的解析式為.9、D【解題分析】

函數(shù)可以化為,設(shè),由,則,即轉(zhuǎn)化為求二次函數(shù)在上的最大值.【題目詳解】由設(shè),由,則.即求二次函數(shù)在上的最大值所以當,即時,函數(shù)取得最大值.故選:D【題目點撥】本題考查的二次型函數(shù)的最值,屬于中檔題.10、C【解題分析】

由向量的加法法則和減法法則化簡已知表達式,再由向量的垂直和等腰三角形的三線合一性質(zhì)得解.【題目詳解】設(shè)邊的中點,則所以在中,垂直于的中線,所以是等腰三角形.故選C.【題目點撥】本題考查向量的線性運算和數(shù)量積,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)余子式的定義,要求的代數(shù)余子式的值,這個元素在三階行列式中的位置是第一行第二列,那么化去第一行第二列得到的代數(shù)余子式,解出即可.【題目詳解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代數(shù)余子式為:解這個余子式的值為,故元素的代數(shù)余子式的值是.故答案為:【題目點撥】考查學生會求行列式中元素的代數(shù)余子式,行列式的計算方法,屬于基礎(chǔ)題.12、0【解題分析】

根據(jù)向量,,取模平方相減得到答案.【題目詳解】兩個等式平方相減得到:故答案為0【題目點撥】本題考查了向量的加減,模長,意在考查學生的計算能力.13、【解題分析】

根據(jù)等比數(shù)列的定義即可判斷出該數(shù)列是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列的通項公式即可寫出該數(shù)列的一個通項公式.【題目詳解】解:∵,該數(shù)列是以為首項,為公比的等比數(shù)列,該數(shù)列的通項公式是:,故答案為:.【題目點撥】本題主要考查等比數(shù)列的定義以及等比數(shù)列的通項公式,屬于基礎(chǔ)題.14、【解題分析】

由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【題目詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【題目點撥】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.15、【解題分析】

將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【題目詳解】因為,所以,則反函數(shù)為:且.【題目點撥】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.16、0.56【解題分析】

根據(jù)在一次射擊中,甲、乙同時射中目標是相互獨立的,利用相互獨立事件的概率乘法公式,即可求解.【題目詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【題目點撥】本題主要考查了相互獨立事件的概率乘法公式的應用,其中解答中合理利用相互獨立的概率乘法公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解題分析】

(1)連接交于,連接,再證明即可.(2)根據(jù)(1)中的可知異面直線與所成角的為,再計算的各邊長分析出為直角三角形,繼而求得即可.【題目詳解】(1)連接交于,連接.則為中點因為分別為中點,故為中位線,故.又面,面.故平面.(2)由(1)有異面直線與所成角即為與所成角即,設(shè)正四棱錐的各邊長均為2,則,,.因為,故.則.即異面直線與所成角的余弦值為【題目點撥】本題主要考查了線面平行的證明以及異面角的余弦求解,需要根據(jù)題意找到中位線證明線面平行,同時要將異面角利用平行轉(zhuǎn)換為平面角,利用三角形中的關(guān)系求解.屬于基礎(chǔ)題.18、(1)(2)證明見解析【解題分析】

(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結(jié)果;(2)兩次利用正弦定理,結(jié)合兩角差的正弦公式、二倍角的正弦公式進行恒等變換求出結(jié)果.【題目詳解】(1)因為,即,又因為,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因為,則,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化簡得展開并整理得【題目點撥】以三角形為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導公式以及二倍角公式,一定要熟練掌握并靈活應用,特別是二倍角公式的各種變化形式要熟記于心.19、(1)(2)【解題分析】

(1)先后利用正弦定理余弦定理化簡得到,即得B的大??;(2)設(shè),則,所以,利用余弦定理求出m的值,再求的面積.【題目詳解】解:(1)因為,由正弦定理,得,即.由余弦定理,得.因為,所以.(2)因為,所以.設(shè),則,所以.在中,由余弦定理得,得,即,整理得,解得.所以.【題目點撥】本題主要考查正弦定理余弦定理解三角形,考查三角形的面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.20、(1)見解析;(2)0.【解題分析】

(1)藥物在白鼠血液內(nèi)的濃度y與時間t的關(guān)系為:當a=1時,y=y(tǒng)1+y2;①當0<t<1時,y=﹣t4=﹣()2,所以ymax=f();②當1≤t≤3時,∵,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論