




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
初中數(shù)學(xué)全部公式
?W為根號)
1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內(nèi)錯角相等,兩直線平行
11同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內(nèi)錯角相等
14兩直線平行,同旁內(nèi)角互補
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個角都等于60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等
(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60。的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30。那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42定理1關(guān)于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱
軸上
45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直
線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即aA2+bA2=cA2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系aA2+bA2=c△2,那么這個三
角形是直角三角形
48定理四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)xl80°
51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等
53平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個角都是直角
61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(axb)+2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組
對角
71定理1關(guān)于中心對稱的兩個圖形是全等的
72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一
點平分,那么這兩個圖形關(guān)于這一點對稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段
相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它
的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的
一半L=(a+b)+2S=Lxh
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84(2)合比性質(zhì)如果a/b=c/d,那么(a土b)/b=(c±d)/d
85(3)等比性質(zhì)如果a/b=c/d=...=m/n(b+d+…+n#0),那么
(a+c+...+m)/(b+d+...+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)
線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么
這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形
三邊對應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形
與原三角形相似
91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平
分線的比都等于相似比
97性質(zhì)定理2相似三角形周長的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等
于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103圓的外部可以看作是圓心的距離大于半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且3巨
離相等的一條直線
109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90。的圓周角所
對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它
的內(nèi)對角
121①直線L和。。相交d<r
②直線L和。。相切d=r
③直線L和。。相離d>r
122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑
124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相
等
134如果兩個圓相切,那么切點一定在連心線上
135①兩圓外離d>R+r②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)
④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦
137定理把圓分成n(n23):
⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139正n邊形的每個內(nèi)角都等于(n-2)x180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
142正三角形面積V3a/4a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為
360°,因止匕kx(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀22/360=LR/2
146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
(還有一些,大家?guī)脱a充吧)
實用工具:常用數(shù)學(xué)公式
公式分類公式表達(dá)式
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|<|a|+|b||a-b|<|a|+|b||a|<b<=>-b<a<b
|a-b|2|aHH-|a|4av|a|
一元二次方程的解-b+V(b2-4ac)/2a-b-V(b2-4ac)/2a
根與系數(shù)的關(guān)系Xl+X2=-b/aXl*X2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac<0注:方程沒有實根,有共姬復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(l-tanAtanB)tan(A-B)=(tanA-tanB)/(l+tanAtanB)
ctg(A+B)=(ctgActgB-l)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+l)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(l-tan2A)ctg2A=(ctg2A-l)/2ctga
cos2a=cos2a-sin2a=2cos2a-l=l-2sin2a
半角公式
sin(A/2)=V((l-cosA)/2)sin(A/2)=-V((l-cosA)/2)
cos(A/2)=V((1+cosA)/2)cos(A/2)=-V((l+cosA)/2)
tan(A/2)=V((l-cosA)/((l+cosA))tan(A/2)=7((l-cosA)/((l+cosA))
ctg(A/2)=V((l+cosA)/((l-cosA))ctg(A/2)=-V((1+cosA)/((l-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 元宇宙社交平臺虛擬社交平臺虛擬空間布局與用戶體驗提升報告
- 2025年金融行業(yè)反洗錢技術(shù)革命與創(chuàng)新監(jiān)管機制解讀報告
- 社區(qū)心理健康服務(wù)在社區(qū)心理健康服務(wù)體系建設(shè)中的實施效果研究與實踐評估探索報告
- 2025年電動汽車電池?zé)峁芾硐到y(tǒng)熱管理材料創(chuàng)新與應(yīng)用趨勢報告
- 城市公園改造提升項目社會穩(wěn)定風(fēng)險評估與城市綠地生態(tài)效益評估報告
- 分布式能源系統(tǒng)2025年生物質(zhì)能源的生物質(zhì)能熱電聯(lián)產(chǎn)政策環(huán)境研究報告
- 培訓(xùn)機構(gòu)課時費管理制度
- 江濱公園日常管理制度
- 2025年四川省德陽市中考英語真題(解析版)
- 月餅成品包裝管理制度
- DB4201∕T 645-2021 房地產(chǎn)經(jīng)紀(jì)服務(wù)規(guī)范
- 撥叉綜合課程設(shè)計
- 壓鑄件QC工程圖
- pH 值對檸檬酸緩凝效果影響的研究
- 學(xué)校物業(yè)服務(wù)監(jiān)督及處罰辦法
- 1104基礎(chǔ)報表填報說明(最新)
- 老舊小區(qū)改造技術(shù)標(biāo)-
- 705型試驗臺技術(shù)條件及說明書
- 天麻、豬苓種植技術(shù)教學(xué)大綱
- 漢字的起源與演變過程.ppt
- 2011年吉林省初中生物會考試題
評論
0/150
提交評論