




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年安徽省合肥市肥東四中學(xué)數(shù)學(xué)九上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,若線段AB=3,則BE=()A.2 B.3 C.4 D.52.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.123.一塊圓形宣傳標志牌如圖所示,點,,在上,垂直平分于點,現(xiàn)測得,,則圓形標志牌的半徑為()A. B. C. D.4.根據(jù)下面表格中的對應(yīng)值:x3.243.253.26ax2+bx+c﹣0.020.010.03判斷關(guān)于x的方程ax2+bx+c=0(a≠0)的一個解x的范圍是()A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.x>3.265.已知是方程的一個解,則的值是()A.±1 B.0 C.1 D.-16.若點A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函數(shù)的圖象上,則下列結(jié)論正確的是()A. B. C. D.7.在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是()A. B. C. D.8.把二次函數(shù)配方后得()A. B.C. D.9.正十邊形的外角和為()A.180° B.360° C.720° D.1440°10.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差11.二次函數(shù)y=ax2+bx+c(a≠0)與一次函數(shù)y=ax+c在同一坐標系中的圖象大致為()A. B. C. D.12.如圖,⊙O是△ABC的外接圓,若∠AOB=100°,則∠ACB的度數(shù)是()A.60° B.50° C.40° D.30°二、填空題(每題4分,共24分)13.如圖,在△ABC中,∠BAC=90°,AB=AC=,點D、E分別在BC、AC上(點D不與點B、C重合),且∠ADE=45°,若△ADE是等腰三角形,則CE=_____.14.線段,的比例中項是______.15.如圖,四邊形是菱形,,對角線,相交于點,于,連接,則=_________度.16.剪掉邊長為2的正方形紙片4個直角,得到一個正八邊形,則這個正八邊形的邊長為____________.17.如圖,等腰直角三角形AOC中,點C在y軸的正半軸上,OC=AC=4,AC交反比例函數(shù)y=的圖象于點F,過點F作FD⊥OA,交OA與點E,交反比例函數(shù)與另一點D,則點D的坐標為_____.18.如圖,在中,,,把繞點順時針旋轉(zhuǎn)得到,若點恰好落在邊上處,則______°.三、解答題(共78分)19.(8分)2018年非洲豬瘟疫情暴發(fā)后,2019年豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計:2019年12月份豬肉價格比2019年年初上漲了30%,某市民2019年12月3日在某超市購買1千克豬肉花了52元.(1)問:2019年年初豬肉的價格為每千克多少元?(2)某超市將進貨價為每千克39元的豬肉,按2019年12月3日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬肉每天有1320元的利潤,并且盡可能讓顧客得到實惠,豬肉的售價應(yīng)該下降多少元?20.(8分)如圖,已知直線l切⊙O于點A,B為⊙O上一點,過點B作BC⊥l,垂足為點C,連接AB、OB.(1)求證:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半徑.21.(8分)如圖,已知⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.(1)求證:AE是⊙O的切線;(2)已知點B是EF的中點,求證:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的條件下,求AE的長.22.(10分)(1)解方程:(2)某快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為萬件和萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同,求該快遞公司投遞總件數(shù)的月平均増長率.23.(10分)(1)用配方法解方程:x2﹣4x+2=0;(2)如圖,在平面直角坐標系中,△ABC的頂點均在格點上,將△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到△A1B1C1.請作出△A1B1C1,寫出各頂點的坐標,并計算△A1B1C1的面積.24.(10分)如圖,已知直線y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(1,4)、B(4,1)兩點,與x軸交于C點.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)圖象直接回答:在第一象限內(nèi),當x取何值時,一次函數(shù)值大于反比例函數(shù)值?(3)點P是y=(x>0)圖象上的一個動點,作PQ⊥x軸于Q點,連接PC,當S△CPQ=S△CAO時,求點P的坐標.25.(12分)如圖,在中,,的中點.(1)求證:三點在以為圓心的圓上;(2)若,求證:四點在以為圓心的圓上.26.如圖1,在平面直角坐標系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.(1)求點P的坐標及直線AC的解析式;(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;(3)如圖3,點M為線段OA上一點,以O(shè)M為邊在第一象限內(nèi)作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當點M與點A重合時停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、B【解析】分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠BAE=60°,AB=AE,得出△BAE是等邊三角形,進而得出BE=1即可.詳解:∵將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等邊三角形,∴BE=1.故選B.點睛:本題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.要注意旋轉(zhuǎn)的三要素:①定點-旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.2、D【解析】根據(jù)正方形的性質(zhì)可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結(jié)合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì),利用相似三角形的性質(zhì)求出AF的長度是解題的關(guān)鍵.3、B【分析】連結(jié),,設(shè)半徑為r,根據(jù)垂徑定理得,在中,由勾股定理建立方程,解之即可求得答案.【詳解】連結(jié),,如圖,設(shè)半徑為,∵,,∴,點、、三點共線,∵,∴,在中,∵,,即,解得,故選B.【點睛】本題考查勾股定理,關(guān)鍵是利用垂徑定理解答.4、B【解析】根據(jù)表中數(shù)據(jù)可得出ax2+bx+c=0的值在-0.02和0.01之間,再看對應(yīng)的x的值即可得.【詳解】∵x=3.24時,ax2+bx+c=﹣0.02;x=3.1時,ax2+bx+c=0.01,∴關(guān)于x的方程ax2+bx+c=0(a≠0)的一個解x的范圍是3.24<x<3.1.故選:B.【點睛】本題考查了估算一元二次方程的近似解:用列舉法估算一元二次方程的近似解,具體方法是:給出一些未知數(shù)的值,計算方程兩邊結(jié)果,當兩邊結(jié)果愈接近時,說明未知數(shù)的值愈接近方程的根.5、A【分析】利用一元二次方程解得定義,將代入得到,然后解關(guān)于的方程.【詳解】解:將代入得到,解得故選A【點睛】本題考查了一元二次方程的解.6、D【分析】先利用頂點式得到拋物線對稱軸為直線x=-1,再比較點A、B、C到直線x=-1的距離,然后根據(jù)二次函數(shù)的性質(zhì)判斷函數(shù)值的大小.【詳解】解:二次函數(shù)的圖象的對稱軸為直線x=-1,a=-1<0,所以該函數(shù)開口向下,且到對稱軸距離越遠的點對應(yīng)的函數(shù)值越小,A(﹣2,y1)距離直線x=-1的距離為1,B(﹣1,y2)距離直線x=-1的距離為0,C(4,y3)距離距離直線x=-1的距離為5.B點距離對稱軸最近,C點距離對稱軸最遠,所以,故選:D.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征.熟練掌握二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.7、D【分析】關(guān)鍵是m的正負的確定,對于二次函數(shù)y=ax2+bx+c,當a>0時,開口向上;當a<0時,開口向下.對稱軸為x=?,與y軸的交點坐標為(0,c).【詳解】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝下,對稱軸為x=?>0,則對稱軸應(yīng)在y軸右側(cè),與圖象不符,故A選項錯誤;
B.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝下,開口方向朝下,與圖象不符,故B選項錯誤;
C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=?<0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故C選項錯誤;
D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝下,對稱軸為x=?>0,則對稱軸應(yīng)在y軸右側(cè),與圖象相符,故D選項正確.
故選D.【點睛】此題考查一次函數(shù)和二次函數(shù)的圖象性質(zhì),解題關(guān)鍵在于要掌握它們的性質(zhì)才能靈活解題.8、B【分析】運用配方法把一般式化為頂點式即可.【詳解】解:==故選:B【點睛】本題考查的是二次函數(shù)的三種形式,正確運用配方法把一般式化為頂點式是解題的關(guān)鍵.9、B【分析】根據(jù)多邊的外角和定理進行選擇.【詳解】解:因為任意多邊形的外角和都等于360°,
所以正十邊形的外角和等于360°,.
故選B.【點睛】本題考查了多邊形外角和定理,關(guān)鍵是熟記:多邊形的外角和等于360度.10、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.11、D【分析】先根據(jù)一次函數(shù)的圖象判斷a、c的符號,再判斷二次函數(shù)圖象與實際是否相符,判斷正誤.【詳解】解:A、由一次函數(shù)y=ax+c的圖象可得:a>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,錯誤;
B、由一次函數(shù)y=ax+c的圖象可得:a>0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向上,交于y軸的正半軸,錯誤;
C、由一次函數(shù)y=ax+c的圖象可得:a<0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,錯誤.
D、由一次函數(shù)y=ax+c的圖象可得:a<0,c>0,此時二次函數(shù)y=ax2+bx+c的圖象應(yīng)該開口向下,與一次函數(shù)的圖象交于同一點,正確;
故選:D.【點睛】本題考查二次函數(shù)的圖象,一次函數(shù)的圖象,解題的關(guān)鍵是熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì):開口方向、對稱軸、頂點坐標等.12、B【分析】直接利用圓周角定理可求得∠ACB的度數(shù).【詳解】∵⊙O是△ABC的外接圓,∠AOB=100°,
∴∠ACB=∠AOB=100°=50.
故選:B.【點睛】本題主要考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角是所對的圓心角的一半.二、填空題(每題4分,共24分)13、2﹣或.【分析】當△ABD∽△DCE時,可能是DA=DE,也可能是ED=EA,所以要分兩種情況求出CE長.【詳解】解:∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC+∠B+∠BAD=180,∠DEC+∠C+∠CDE=180°,∴∠ADC+∠B+∠BAD=∠DEC+∠C+∠CDE,∴∠EDC=∠BAD,∴△ABD∽△DCE∵∠DAE<∠BAC=90°,∠ADE=45°,∴當△ADE是等腰三角形時,第一種可能是AD=DE.∴△ABD≌△DCE.∴CD=AB=.∴BD=2﹣=CE,當△ADE是等腰三角形時,第二種可能是ED=EA.∵∠ADE=45°,∴此時有∠DEA=90°.即△ADE為等腰直角三角形.∴AE=DE=AC=.∴CE=AC=當AD=EA時,點D與點B重合,不合題意,所以舍去,因此CE的長為2﹣或.故答案為:2﹣或.【點睛】此題主要考查相似三角形的應(yīng)用,解題的關(guān)鍵是熟知全等三角形的性質(zhì)及等腰直角三角形的性質(zhì).14、【分析】根據(jù)比例中項的定義,若b是a,c的比例中項,即b2=ac.即可求解.【詳解】解:設(shè)線段c是線段a、b的比例中項,∴c2=ab,∵a=2,b=3,∴c=故答案為:【點睛】本題主要考查了線段的比例中項的定義,注意線段不能為負.15、25【解析】首先求出∠HDB的度數(shù),再利用直角三角形斜邊中線定理可得OH=OD,由此可得∠OHD=∠ODH即可解決問題.【詳解】∵四邊形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°?∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°?ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案為:25.【點睛】本題考查了菱形的性質(zhì),直角三角形斜邊中線定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.16、【分析】設(shè)腰長為x,則正八邊形邊長2-2x,根據(jù)勾股定理列方程,解方程即可求出正八邊形的邊.【詳解】割掉的四個直角三角形都是等腰直角三角形,設(shè)腰長為x,則正八邊形邊長2-2x,,(舍),,.故答案為:.【點睛】本題考查了正方形和正八邊形的性質(zhì)以及勾股定理的運用,解題的關(guān)鍵是設(shè)出未知數(shù)用列方程的方法解決幾何問題.17、(4,)【分析】先求得F的坐標,然后根據(jù)等腰直角三角形的性質(zhì)得出直線OA的解析式為y=x,根據(jù)反比例函數(shù)的對稱性得出F關(guān)于直線OA的對稱點是D點,即可求得D點的坐標.【詳解】∵OC=AC=4,AC交反比例函數(shù)y=的圖象于點F,∴F的縱坐標為4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直線OA的解析式為y=x,∴F關(guān)于直線OA的對稱點是D點,∴點D的坐標為(4,),故答案為:(4,).【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,等腰直角三角形的性質(zhì),反比例函數(shù)的對稱性是解題的關(guān)鍵.18、100【分析】作AC與DE的交點為點O,則∠AOD=∠EOC,根據(jù)旋轉(zhuǎn)的性質(zhì),CD=CB,即∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°,再由AB=AC可得∠B=∠ACB=70°即A=40°,再根據(jù)三角和定理即可得∠AOD=180°-40°-40°=100°,即可解答.【詳解】如圖,作AC交DE為O則∠AOD=∠EOC根據(jù)旋轉(zhuǎn)的性質(zhì),CD=CB,∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°AB=AC∠B=∠ACB=70°∴∠A=40°∠AOD=180°-∠A-∠ADO∠AOD=180°-40°-40°=100°∠AOD=∠EOC∠1=100°【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題突破口是作AC與DE的交點為點O,即∠AOD=∠EOC.三、解答題(共78分)19、(3)今年年初豬肉的價格為每千克3元;(3)豬肉的售價應(yīng)該下降3元.【分析】(3)設(shè)3039年年初豬肉的價格為每千克x元,根據(jù)題意列出方程,解方程即可;(3)根據(jù)題意利用利潤=每千克的利潤×數(shù)量列出方程,解方程即可解決問題.【詳解】解:(3)設(shè)今年年初豬肉的價格為每千克x元,依題意,得:(3+30%)x=53,解得:x=3.答:今年年初豬肉的價格為每千克3元.(3)設(shè)豬肉的售價應(yīng)該下降y元,則每日可售出(300+30y)千克,依題意,得:(53﹣39﹣y)(300+30y)=3330,整理,得:y3﹣3y+3=0,解得:y3=3,y3=3.∵讓顧客得到實惠,∴y=3.答:豬肉的售價應(yīng)該下降3元.【點睛】本題主要考查一元一次方程及一元二次方程的應(yīng)用,讀懂題意列出方程是解題的關(guān)鍵.20、(1)詳見解析;(2)⊙O的半徑是.【分析】(1)連接OA,求出OA∥BC,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根據(jù)矩形的性質(zhì)求出OD=AC=1,根據(jù)勾股定理求出BC,根據(jù)垂徑定理求出BD,再根據(jù)勾股定理求出OB即可.【詳解】(1)證明:連接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:過O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC=1,在Rt△ACB中,AB=,AC=1,由勾股定理得:BC==3,∵OD⊥BC,OD過O,∴BD=DC=BC==1.5,在Rt△ODB中,由勾股定理得:OB=,即⊙O的半徑是.【點睛】此題主要考查切線的性質(zhì)及判定,解題的關(guān)鍵熟知等腰三角形的性質(zhì)、垂徑定理及切線的性質(zhì).21、(1)證明見解析;(2)證明見解析;(3).【分析】(1)連接CD,根據(jù)直徑所對的圓周角為直角得出∠ADB+∠EDC=90°,根據(jù)同弧所對的圓周角相等得出∠BAC=∠EDC,然后結(jié)合已知條件得出∠EAB+∠BAC=90°,從而說明切線;(2)連接BC,根據(jù)直徑的性質(zhì)得出∠ABC=90°,根據(jù)B是EF的中點得出AB=EF,即∠BAC=∠AFE,則得出三角形相似;(3)根據(jù)三角形相似得出,根據(jù)AF和CF的長度得出AC的長度,然后根據(jù)EF=2AB代入求出AB和EF的長度,最后根據(jù)Rt△AEF的勾股定理求出AE的長度.【詳解】解:(1)如答圖1,連接CD,∵AC是⊙O的直徑,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠BAC=∠EAB+∠BAC=90°∴EA是⊙O的切線;(2)如答圖2,連接BC,∵AC是⊙O的直徑,∴∠ABC=90°.∴∠CBA=∠ABC=90°∵B是EF的中點,∴在Rt△EAF中,AB=BF∴∠BAC=∠AFE∴△EAF∽△CBA.(3)∵△EAF∽△CBA,∴∵AF=4,CF=2,∴AC=6,EF=2AB.∴,解得AB=2∴EF=4∴AE=.【點睛】本題考查切線的判定與性質(zhì);三角形相似的判定與性質(zhì).22、(1);(2)該快遞公司投遞總件數(shù)的月平均增長率為10%.【分析】(1)用因式分解法即可求解;(2)五月份完成投遞的快遞總件數(shù)=三月份完成投遞的快遞總件數(shù)×(1+x)2,進而列出方程,解方程即可.【詳解】(1)∴∴4x-3=0或2x+1=0∴(2)設(shè)該快遞公司投遞總件數(shù)的月平均增長率為x,根據(jù)題意得10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合題意舍去)答:該快遞公司投遞總件數(shù)的月平均增長率為10%.【點睛】此題主要考查了一元二次方程的應(yīng)用---增長率問題,根據(jù)題意正確用未知數(shù)表示出五月份完成投遞的快遞總件數(shù)是解題關(guān)鍵.23、(1)x1=2+,x2=2﹣;(2)A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面積=×2×2=2.【分析】(1)利用配方法得到(x﹣2)2=2,然后利用直接開平方法解方程;(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應(yīng)點A1、B1、C1;然后寫出△A1B1C1各頂點的坐標,利用三角形面積公式計算△A1B1C1的面積.【詳解】解:(1)移項,得x2﹣4x=﹣2,配方,得x2﹣4x+4=﹣2+4,即(x﹣2)2=2,所以x﹣2=±所以原方程的解為x1=2+,x2=2﹣;(2)如圖,△A1B1C1為所作;A1(﹣1,﹣1),B1(﹣4,0),C1(﹣4,2),△A1B1C1的面積=×2×2=2.【點睛】本題主要考察作圖-旋轉(zhuǎn)變換、三角形的面積公式和解方程,解題關(guān)鍵是熟練掌握計算法則.24、(1)y=﹣x+1;(2)當1<x<4時,一次函數(shù)值大于反比例函數(shù)值;(3)【分析】(1)根據(jù)待定系數(shù)法求得即可;(2)由兩個函數(shù)圖象即可得出答案;(3)設(shè)P(m,),先求得△AOC的面積,即可求得△CPQ的面積,根據(jù)面積公式即可得到|1﹣m|?=1,解得即可.【詳解】解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函數(shù)為y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函數(shù)為y=﹣x+1.(2)根據(jù)圖象得:當1<x<4時,一次函數(shù)值大于反比例函數(shù)值;(3)設(shè)P(m,),由一次函數(shù)y=﹣x+1可知C(1,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=1,∴|1﹣m|?=1,解得m=或m=﹣(舍去),∴P(,).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)的解析式,熟練掌握待定系數(shù)法求函數(shù)解析式是解決問題的關(guān)鍵.25、(1)見解析;(2)見解析【分析】(1)連結(jié)OC,利用直角三角形斜邊中線等于斜邊一半可得OA=OB=OC,所以A,B,C三點在以O(shè)為圓心,OA長為半徑的圓上;(2)連結(jié)OD,可得OA=OB=OC=OD,所以A,B,C,D四點在以O(shè)為圓心,OA長為半徑的圓上.【詳解】(1)連結(jié)OC,在中,,的中點,∴OC=OA=OB,∴三點在以為圓心的圓上;(2)連結(jié)OD,∵,∴OA=OB=OC=OD,∴四點在以為圓心的圓上.【點睛】此題考查了圓的定義:到定點的距離等于定長的點都在同一個圓上,所以證明幾個點共圓,只需要證明這幾個點到某個定點的距離相等即可.26、(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值為﹣3或,理由見解析【分析】(1)由拋物線y=x2+x+3可求出點C,P,A的坐標,再用待定系數(shù)法,可求出直線AC的解析式;(2)在OC上取點H(0,),連接HF,AH,求出AH的長度,證△HOF∽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校游泳池管理制度
- 學(xué)校自備水管理制度
- 學(xué)校飲水點管理制度
- 學(xué)生租賃車管理制度
- 宅急送服務(wù)管理制度
- 安全生產(chǎn)規(guī)管理制度
- 安監(jiān)+風(fēng)險管理制度
- 宋代酒專賣管理制度
- 定制化倉儲管理制度
- 審核與評審管理制度
- 防火封堵工程專項施工方案(精選二篇)
- 肥皂泡(第二課時)教學(xué)設(shè)計及反思
- 術(shù)后早期炎癥性腸梗阻
- 安全生產(chǎn)工貿(mào)行業(yè)企業(yè)崗位安全生產(chǎn)責(zé)任清單
- 醫(yī)療美容病歷范本(試行)(適用于民營醫(yī)療美容機構(gòu))
- 工業(yè)純鈦的耐化學(xué)腐蝕數(shù)據(jù)表
- 110kv油浸電力變壓器基礎(chǔ)知識介紹
- 期權(quán)基礎(chǔ)知識2——期權(quán)價格及影響因素
- 青少版新概念英語1A單詞表
- 14銀行業(yè)金融機構(gòu)從業(yè)人員處罰信息管理辦法
- 腫瘤標志物及其臨床意義
評論
0/150
提交評論