2023-2024學年湖南省張家界市慈利縣九年級數學第一學期期末經典試題含解析_第1頁
2023-2024學年湖南省張家界市慈利縣九年級數學第一學期期末經典試題含解析_第2頁
2023-2024學年湖南省張家界市慈利縣九年級數學第一學期期末經典試題含解析_第3頁
2023-2024學年湖南省張家界市慈利縣九年級數學第一學期期末經典試題含解析_第4頁
2023-2024學年湖南省張家界市慈利縣九年級數學第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省張家界市慈利縣九年級數學第一學期期末經典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題3分,共30分)1.關于x的一元二次方程有兩個不相等的實數根,則a的取值范圍是()A.a>-1 B. C. D.a>-1且2.若拋物線的對稱軸是直線,則方程的解是()A., B., C., D.,3.下列說法正確的是()A.為了了解長沙市中學生的睡眠情況,應該采用普查的方式B.某種彩票的中獎機會是1%,則買111張這種彩票一定會中獎C.若甲組數據的方差s甲2=1.1,乙組數據的方差s乙2=1.2,則乙組數據比甲組數據穩定D.一組數據1,5,3,2,3,4,8的眾數和中位數都是34.如圖,已知點A,B,C,D,E,F是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為()A. B. C. D.5.⊙O的半徑為8,圓心O到直線l的距離為4,則直線l與⊙O的位置關系是A.相切 B.相交 C.相離 D.不能確定6.如圖,在Rt△ABC中,CE是斜邊AB上的中線,CD⊥AB,若CD=5,CE=6,則△ABC的面積是()A.24 B.25 C.30 D.367.在?ABCD中,∠ACB=25°,現將?ABCD沿EF折疊,使點C與點A重合,點D落在G處,則∠GFE的度數()A.135° B.120° C.115° D.100°8.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的兩不相等的實數根,且,則m的值是()A.或3 B.﹣3 C. D.9.如圖1,在菱形ABCD中,∠A=120°,點E是BC邊的中點,點P是對角線BD上一動點,設PD的長度為x,PE與PC的長度和為y,圖2是y關于x的函數圖象,其中H是圖象上的最低點,則a+b的值為()A.7 B. C. D.10.如圖,∠1=∠2,則下列各式不能說明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C. D.二、填空題(每小題3分,共24分)11.如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DE⊥AB于點E,DF⊥AC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.12.若是關于x的一元二次方程的解,則代數式的值是________.13.二次函數y=﹣x2+bx+c的部分圖象如圖所示,由圖象可知,不等式﹣x2+bx+c<0的解集為______.14.如圖,由四個全等的直角三角形圍成的大正方形的面積是169,小正方形的面積為49,則cosα=_____.15.一個盒子里有完全相同的三個小球,球上分別標有數字,,,隨機摸出一個小球(不放回),其數字為,再隨機摸出另一個小球其數字記為,則滿足關于的方程有實數根的概率是___________.16.如圖,在平面直角坐標系xOy中,點A在函數y=(x>0)的圖象上,AC⊥x軸于點C,連接OA,則△OAC面積為_____.17.已知△ABC與△DEF相似,且△ABC與△DEF的相似比為2:3,若△DEF的面積為36,則△ABC的面積等于________.18.已知二次函數y=ax2+3ax+c的圖象與x軸的一個交點為(﹣4,0),則它與x軸的另一個交點的坐標是___.三、解答題(共66分)19.(10分)問題背景:如圖1設P是等邊△ABC內一點,PA=6,PB=8,PC=10,求∠APB的度數.小君研究這個問題的思路是:將△ACP繞點A逆時針旋轉60°得到△ABP',易證:△APP'是等邊三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.簡單應用:(1)如圖2,在等腰直角△ABC中,∠ACB=90°.P為△ABC內一點,且PA=5,PB=3,PC=2,則∠BPC=°.(2)如圖3,在等邊△ABC中,P為△ABC內一點,且PA=5,PB=12,∠APB=150°,則PC=.拓展廷伸:(3)如圖4,∠ABC=∠ADC=90°,AB=BC.求證:BD=AD+DC.(4)若圖4中的等腰直角△ABC與Rt△ADC在同側如圖5,若AD=2,DC=4,請直接寫出BD的長.20.(6分)今年,我市某中學響應“足球進校園”的號召,開設了“足球大課間”活動.現需要購進100個某品牌的足球供學生使用.經調查,該品牌足球2015年單價為200元,2017年單價為162元.(1)求2015年到2017年該品牌足球單價平均每年降低的百分率;(2)選購期間發現該品牌足球在兩個文體用品商店有不同的促銷方案:試問去哪個商場購買足球更優惠?21.(6分)某公司投入研發費用80萬元(80萬元只計入第一年成本),成功研發出一種產品.公司按訂單生產(產量=銷售量),第一年該產品正式投產后,生產成本為6元/件.此產品年銷售量y(萬件)與售價x(元/件)之間滿足函數關系式y=﹣x+1.(1)求這種產品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數關系式;(2)該產品第一年的利潤為20萬元,那么該產品第一年的售價是多少?(3)第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發,使產品的生產成本降為5元/件.為保持市場占有率,公司規定第二年產品售價不超過第一年的售價,另外受產能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.22.(8分)某企業設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.求出每天的銷售利潤元與銷售單價元之間的函數關系式;求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?如果該企業要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?每天的總成本每件的成本每天的銷售量23.(8分)如圖,矩形的兩邊的長分別為3、8,是的中點,反比例函數的圖象經過點,與交于點.(1)若點坐標為,求的值;(2)若,求反比例函數的表達式.24.(8分)如圖,為的直徑,點為延長線上的一點,過點作的切線,切點為,過兩點分別作的垂線,垂足分別為,連接.求證:(1)平分;(2)若,求的長.25.(10分)如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點,與y軸交于點C,其中點A(-1,0).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發,以每秒個單位長度的速度向點D運動,過點P作直線PQ∥y軸,與拋物線交于點Q,設運動時間為t(s).(1)直接寫出b,c的值及點D的坐標;(2)點E是拋物線上一動點,且位于第四象限,當△CBE的面積為6時,求出點E的坐標;(3)在線段PQ最長的條件下,點M在直線PQ上運動,點N在x軸上運動,當以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標.26.(10分)某區規定學生每天戶外體育活動時間不少于1小時,為了解學生參加戶外體育活動的情況,對部分學生每天參加戶外體育活動的時間進行了隨機抽樣調查,并將調查結果繪制成如圖的統計圖表(不完整).請根據圖表中的信息,解答下列問題:(1)表中的a=_____,將頻數分布直方圖補全;(2)該區8000名學生中,每天戶外體育活動的時間不足1小時的學生大約有多少名?(3)若從參加戶外體育活動時間最長的3名男生和1名女生中隨機抽取兩名,請用畫樹狀圖或列表法求恰好抽到1名男生和1名女生的概率.組別時間(小時)頻數(人數)頻率A0≤t<0.5200.05B0.5≤t<1a0.3Cl≤t<1.51400.35D1.5≤t<2800.2E2≤t<2.5400.1

參考答案一、選擇題(每小題3分,共30分)1、D【解析】利用一元二次方程的定義及根的判別式列不等式a≠1且△=22﹣4a×(﹣1)>1,從而求解.【詳解】解:根據題意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故選D.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數根;當△=1時,方程有兩個相等的兩個實數根;當△<1時,方程無實數根.2、C【分析】利用對稱軸公式求出b的值,然后解方程.【詳解】解:由題意:解得:b=-4∴解得:,故選:C【點睛】本題考查拋物線對稱軸公式及解一元二次方程,熟記公式正確計算是本題的解題關鍵.3、D【分析】根據抽樣調查、概率、方差、中位數與眾數的概念判斷即可.【詳解】A、為了解長沙市中學生的睡眠情況,應該采用抽樣調查的方式,不符合題意;B、某種彩票的中獎機會是1%,則買111張這種彩票可能會中獎,不符合題意;C、若甲組數據的方差s甲2=1.1,乙組數據的方差s乙2=1.2,則甲組數據比乙組數據穩定,不符合題意;D、一組數據1,5,3,2,3,4,8的眾數和中位數都是3,符合題意;故選:D.【點睛】本題考查統計的相關概念,關鍵在于熟記概念.4、D【分析】先求出連接兩點所得的所有線段總數,再用列舉法求出取到長度為2的線段條數,由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率.【詳解】∵點A,B,C,D,E,F是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,∴連接兩點所得的所有線段總數n==15條,∵取到長度為2的線段有:FC、AD、EB共3條∴在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為:p=.故選:D【點睛】此題主要考查了正多邊形和圓以及幾何概率,正確利用正六邊形的性質得出AD的長是解題關鍵.5、B【分析】根據圓O的半徑和圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.【詳解】∵⊙O的半徑為8,圓心O到直線L的距離為4,

∵8>4,即:d<r,

∴直線L與⊙O的位置關系是相交.

故選B.6、C【分析】根據題意及直角三角形斜邊上的中線等于斜邊的一半可得:AB=2CE=12再根據三角形面積公式,即△ABC面積=AB×CD=30.故選C.【詳解】解:∵CE是斜邊AB上的中線,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故選:C.【點睛】本題的考點是直角三角形斜邊上的中線性質及三角形面積公式.方法是根據題意求出三角形面積公式中的底,再根據面積公式即可得出答案.7、C【詳解】解:根據圖形的折疊可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故選C.考點:1.平行四邊形的性質2.圖形的折疊的性質.8、C【分析】先利用判別式的意義得到m>-,再根據根與系數的關系的x1+x2=-(2m+1),x1x2=m2-1,則(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解關于m的方程,最后確定滿足條件的m的值.【詳解】解:根據題意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根據根與系數的關系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值為.故選:C.【點睛】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.也考查了根的判別式.9、C【分析】由A、C關于BD對稱,推出PA=PC,推出PC+PE=PA+PE,推出當A、P、E共線時,PE+PC的值最小,觀察圖象可知,當點P與B重合時,PE+PC=6,推出BE=CE=2,AB=BC=4,分別求出PE+PC的最小值,PD的長即可解決問題.【詳解】解:∵在菱形ABCD中,∠A=120°,點E是BC邊的中點,∴易證AE⊥BC,∵A、C關于BD對稱,∴PA=PC,∴PC+PE=PA+PE,∴當A、P、E共線時,PE+PC的值最小,即AE的長.觀察圖象可知,當點P與B重合時,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值為,∴點H的縱坐標a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴點H的橫坐標b=,∴a+b=;故選C.【點睛】本題考查動點問題的函數圖象,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.10、D【分析】根據∠1=∠2,可知∠DAE=∠BAC,因此只要再找一組角或一組對應邊成比例即可.【詳解】解:A和B符合有兩組角對應相等的兩個三角形相似;C、符合兩組對應邊的比相等且相應的夾角相等的兩個三角形相似;D、對應邊成比例但無法證明其夾角相等,故其不能推出兩三角形相似.故選D.【點睛】考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.二、填空題(每小題3分,共24分)11、【分析】由勾股定理求出BC的長,再證明四邊形DEAF是矩形,可得EF=AD,根據垂線段最短和三角形面積即可解決問題.【詳解】解:∵∠BAC=90°,且BA=9,AC=12,

∴在Rt△ABC中,利用勾股定理得:BC===15,

∵DE⊥AB,DF⊥AC,∠BAC=90°

∴∠DEA=∠DFA=∠BAC=90°,

∴四邊形DEAF是矩形,

∴EF=AD,GF=EF

∴當AD⊥BC時,AD的值最小,

此時,△ABC的面積=AB×AC=BC×AD,

∴AD===,

∴EF=AD=,因此EF的最小值為;又∵GF=EF∴GF=×=

故線段GF的最小值為:.【點睛】本題考查了矩形的判定和性質、勾股定理、三角形面積、垂線段最短等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.12、1【分析】把x=2代入已知方程求得2a+b的值,然后將其整體代入所求的代數式并求值即可.【詳解】解:∵關于x的一元二次方程的解是x=2,∴4a+2b-8=0,則2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=1.故答案是:1.【點睛】本題考查了一元二次方程的解定義,以及求代數式的值,解題時,利用了“整體代入”的數學思想.13、x<?1或x>5.【分析】先利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標為(-1,0),然后寫出拋物線在x軸下方所對應的自變量的范圍即可.【詳解】拋物線的對稱軸為直線x=2,而拋物線與x軸的一個交點坐標為(5,0),所以拋物線與x軸的另一個交點坐標為(?1,0),所以不等式?x2+bx+c<0的解集為x<?1或x>5.故答案為x<?1或x>5.考點:二次函數圖象的性質14、【分析】分別求出大正方形和小正方形的邊長,再利用勾股定理列式求出AC,然后根據正弦和余弦的定義即可求cosα的值.【詳解】∵小正方形面積為49,大正方形面積為169,∴小正方形的邊長是7,大正方形的邊長是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC?60=0,解得AC=5,AC=?12(舍去),∴BC==12,∴cosα==故填:.【點睛】本題考查了勾股定理的證明,銳角三角形函數的定義,利用勾股定理列式求出直角三角形的較短的直角邊是解題的關鍵.15、.【解析】解:畫樹狀圖得:∵共有6種等可能的結果,滿足關于x的方程x2+px+q=0有實數根的有4種情況,∴滿足關于x的方程x2+px+q=0有實數根的概率是:.故答案為.16、1【分析】根據反比例函數比例系數k的幾何意義可得S△OAC=×2=1,再相加即可.【詳解】解:∵函數y=(x>0)的圖象經過點A,AC⊥x軸于點C,∴S△OAC=×2=1,故答案為1.【點睛】本題考查了反比例函數比例系數k的幾何意義,掌握過反比例函數圖象上的點向x軸或y軸作垂線,這一點和垂足、原點組成的三角形的面積的計算方法是解本題的關鍵.17、16【分析】利用相似三角形面積比等于相似比的平方求解即可.【詳解】解:∵ABC與DEF相似,且ΔABC與ΔDEF的相似比為2:3,∴,∵ΔDEF的面積為36,∴∴ΔABC的面積等于16,故答案為16.【點睛】本題考查了相似三角形的性質,熟記相似三角形的面積比等于相似比的平方是解決本題的關鍵.18、(1,0).【分析】先根據二次函數解析式求出拋物線的對稱軸,然后利用拋物線的對稱性即可求出它與x軸的另一個交點的坐標.【詳解】二次函數y=ax2+3ax+c的對稱軸為:x=﹣=﹣,∵二次函數y=ax2+3ax+c的圖象與x軸的一個交點為(﹣4,0),∴它與x軸的另一個交點坐標與(﹣4,0)關于直線x=﹣對稱,其坐標是(1,0).故答案是:(1,0).【點睛】此題考查的是已知二次函數圖像與x軸的一個交點坐標,求與x軸的另一個交點坐標,掌握拋物線是軸對稱圖形和拋物線的對稱軸公式是解決此題的關鍵.三、解答題(共66分)19、(1)135;(2)13;(3)見解析;(4)【分析】簡單應用:(1)先利用旋轉得出BP'=AP=5,∠PCP'=90°,CP'=CP=2,再根據勾股定理得出PP'=CP=4,最后用勾股定理的逆定理得出△BPP'是以BP'為斜邊的直角三角形,即可得出結論;(2)同(1)的方法得出∠APP'=60°,進而得出∠BPP'=∠APB﹣∠APP'=90°,最后用勾股定理即可得出結論;拓展廷伸:(3)先利用旋轉得出BD'=BD,CD'=AD,∠BCD'=∠BAD,再判斷出點D'在DC的延長線上,最后用勾股定理即可得出結論;(4)先利用旋轉得出BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',再判斷出點D'在AD的延長線上,最后用勾股定理即可得出結論.【詳解】解:簡單應用:(1)如圖2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,將△ACP繞點C逆時針旋轉90°得到△CBP',連接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2,∴∠CPP'=∠CP'P=45°,根據勾股定理得,PP'=CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'為斜邊的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,故答案為:135;(2)如圖3,∵△ABC是等邊三角形,∴∠BAC=60°,AC=AB,將△ACP繞點A逆時針旋轉60°得到△ABP',連接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等邊三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90°,根據勾股定理得,BP'==13,∴CP=13,故答案為:13;拓展廷伸:(3)如圖4,在△ABC中,∠ABC=90°,AB=BC,將△ABD繞點B順時針旋轉90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴點D'在DC的延長線上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=BD,∴BD=CD+AD;(4)如圖5,在△ABC中,∠ABC=90°,AB=BC,連接BD,將△CBD繞點B順時針旋轉90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB與CD的交點記作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴點D'在AD的延長線上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=DD'=.【點睛】本題主要考查了三角形的旋轉變換,涉及了旋轉的性質、等邊三角形的判定和性質、等腰直角三角形的性質、勾股定理,靈活的利用三角形的旋轉變換添加輔助線是解題的關鍵.20、(1)10%.(2)去B商場購買足球更優惠.【解析】試題分析:(1)設2015年到2017年該品牌足球單價平均每年降低的百分率為x,根據2015年及2017年該品牌足球的單價,即可得出關于x的一元二次方程,解之即可得出結論;(2)根據兩商城的促銷方案,分別求出在兩商城購買100個該品牌足球的總費用,比較后即可得出結論.試題解析:(1)設2015年到2017年該品牌足球單價平均每年降低的百分率為x,根據題意得:200×(1﹣x)2=162,解得:x=0.1=10%或x=﹣1.9(舍去).答:2015年到2017年該品牌足球單價平均每年降低的百分率為10%.(2)100×≈90.91(個),在A商城需要的費用為162×91=14742(元),在B商城需要的費用為162×100×=1(元).14742>1.答:去B商場購買足球更優惠.考點:一元二次方程的應用.21、(1)W1=﹣x2+32x﹣2;(2)該產品第一年的售價是16元;(3)該公司第二年的利潤W2至少為18萬元.【解析】(1)根據總利潤=每件利潤×銷售量﹣投資成本,列出式子即可;(2)構建方程即可解決問題;(3)根據題意求出自變量的取值范圍,再根據二次函數,利用而學會設的性質即可解決問題.【詳解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由題意:20=﹣x2+32x﹣2.解得:x=16,答:該產品第一年的售價是16元.(3)由題意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7時,W2有最小值,最小值=18(萬元),答:該公司第二年的利潤W2至少為18萬元.【點睛】本題考查二次函數的應用、一元二次方程的應用等知識,解題的關鍵是理解題意,學會構建方程或函數解決問題.22、;當時,;銷售單價應該控制在82元至90元之間.【分析】(1)根據每天銷售利潤=每件利潤×每天銷售量,可得出函數關系式;(2)將(1)的關系式整理為頂點式,根據二次函數的頂點,可得到答案;(3)先求出利潤為4000元時的售價,再結合二次函數的增減性可得出答案.【詳解】解:由題意得:;,拋物線開口向下.,對稱軸是直線,當時,;當時,,解得,.當時,每天的銷售利潤不低于4000元.由每天的總成本不超過7000元,得,解得.,,銷售單價應該控制在82元至90元之間.【點睛】本題考查二次函數的應用,熟練掌握二次函數的圖像與性質是解題的關鍵.23、(1)m=-12;(2)【分析】(1)根據矩形的性質求出點E的坐標,根據待定系數法即可得到答案;(2)根據勾股定理,可得AE的長,根據線段的和差,可得BF的長,可得點F的坐標,根據待定系數法,可得m的值,可得答案.【詳解】(1)∵四邊形ABCD是矩形,∴BC=AD=3,CD=AB=8,∠D=∠DCB=90°,∵點B坐標為(-6,0),E為CD中點,∴E(-3,4),∵函數圖象過E點,∴m=-34=-12;(2)∵∠D=90°,AD=3,DE=CD=4,∴AE=5,∵AF-AE=2,∴AF=7,∴BF=1,設點F(x,1),則點E(x+3,4),∵函數圖象過點E、F,∴x=4(x+3),解得x=-4,∴F(-4,1),∴m=-4,∴反比例函數的表達式是.【點睛】此題考查待定系數法求反比例函數的解析式,勾股定理,線段中點的特點,矩形的性質,(2)中可以設點E、F中一個點的坐標,表示出另一個點的坐標,由兩點在同一個函數圖象上可得到等式求出函數解析式,注意解題方法的積累.24、(1)見解析;(2)【分析】(1)連接OM,可證OM∥AC,得出∠CAM=∠AMO,由OA=OM可得∠OAM=∠AMO,從而可得出結果;(2)先求出∠MOP的度數,OB的長度,則用弧長公式可求出的長.【詳解】解:(1)連接OM,∵PE為⊙O的切線,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的長為.【點睛】本題考查了圓的切線的性質,弧長的計算,平行線的判定與性質以及等腰三角形的性質等知識,解題的關鍵是靈活運用這些知識解決問題.25、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)將點A分別代入y=-x2+bx+3,y=x+c中求出b、c的值,確定解析式,再解兩個函數關系式組成的方程組即可得到點D的坐標;(2))過點E作EF⊥y軸,設E(x,-x2+2x+3),先求出點B、C的坐標,再利用面積加減關系表示出△CBE的面積,即可求出點E的坐標.(3)分別以點D、M、N為直角頂點討論△MND是等腰直角三角形時點N的坐標.【詳解】(1)將A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,將點A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)過點E作EF⊥y軸,設E(x,-x2+2x+3),當y=-x2+2x+3中y=0時,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直線AD的解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論