江蘇省揚州市教育科研究院重點達標名校2024屆中考數學最后沖刺模擬試卷含解析_第1頁
江蘇省揚州市教育科研究院重點達標名校2024屆中考數學最后沖刺模擬試卷含解析_第2頁
江蘇省揚州市教育科研究院重點達標名校2024屆中考數學最后沖刺模擬試卷含解析_第3頁
江蘇省揚州市教育科研究院重點達標名校2024屆中考數學最后沖刺模擬試卷含解析_第4頁
江蘇省揚州市教育科研究院重點達標名校2024屆中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市教育科研究院重點達標名校2024年中考數學最后沖刺模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若分式在實數范圍內有意義,則實數的取值范圍是()A. B. C. D.2.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-103.如圖,四邊形ABCD內接于⊙O,F是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數為()A.45° B.50° C.55° D.60°4.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.5.1﹣的相反數是()A.1﹣ B.﹣1 C. D.﹣16.如圖是反比例函數(k為常數,k≠0)的圖象,則一次函數的圖象大致是()A. B. C. D.7.剪紙是水族的非物質文化遺產之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.8.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.39.不等式5+2x<1的解集在數軸上表示正確的是().A. B. C. D.10.《九章算術》是我國古代內容極為豐富的數學名著.書中有下列問題“今有勾八步,股十五步,問勾中容圓徑幾何?”其意思是“今有直角三角形(如圖),勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內切圓)直徑是多少?”()A.3步 B.5步 C.6步 D.8步二、填空題(共7小題,每小題3分,滿分21分)11.已知是整數,則正整數n的最小值為___12.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F對應,若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.13.如果,那么=_____.14.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數經過正方形AOBC對角線的交點,半徑為()的圓內切于△ABC,則k的值為________.15.函數中,自變量x的取值范圍是.16.如圖,點P(3a,a)是反比例函(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數的表達式為______.17.如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么cos∠EFC的值是.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.19.(5分)如圖1,在直角梯形ABCD中,動點P從B點出發,沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.20.(8分)為了解某校七年級學生的英語口語水平,隨機抽取該年級部分學生進行英語口語測試,學生的測試成績按標準定為A、B、C、D

四個等級,并把測試成績繪成如圖所示的兩個統計圖表.七年級英語口語測試成績統計表成績分等級人數A12BmCnD9請根據所給信息,解答下列問題:本次被抽取參加英語口語測試的學生共有多少人?求扇形統計圖中

C

級的圓心角度數;若該校七年級共有學生640人,根據抽樣結課,估計英語口語達到

B級以上包括B

級的學生人數.21.(10分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.22.(10分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.23.(12分)在某校舉辦的2012年秋季運動會結束之后,學校需要為參加運動會的同學們發紀念品.小王負責到某商場買某種紀念品,該商場規定:一次性購買該紀念品200個以上可以按折扣價出售;購買200個以下(包括200個)只能按原價出售.小王若按照原計劃的數量購買紀念品,只能按原價付款,共需要1050元;若多買35個,則按折扣價付款,恰好共需1050元.設小王按原計劃購買紀念品x個.(1)求x的范圍;(2)如果按原價購買5個紀念品與按打折價購買6個紀念品的錢數相同,那么小王原計劃購買多少個紀念品?24.(14分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數據:≈1.414,≈1.732).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】

根據分式有意義的條件即可求出答案.【題目詳解】解:由分式有意義的條件可知:,,故選:.【題目點撥】本題考查分式有意義的條件,解題的關鍵是熟練運用分式有意義的條件,本題屬于基礎題型.2、C【解題分析】

根據多項式乘以多項式的法則進行計算即可.【題目詳解】x-2x+5故選:C.【題目點撥】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.3、B【解題分析】

先根據圓內接四邊形的性質求出∠ADC的度數,再由圓周角定理得出∠DCE的度數,根據三角形外角的性質即可得出結論.【題目詳解】∵四邊形ABCD內接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【題目點撥】本題考查圓內接四邊形的性質,圓周角定理.圓內接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.4、A【解題分析】

根據軸對稱圖形的概念對各選項分析判斷利用排除法求解.【題目詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【題目點撥】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、B【解題分析】

根據相反數的的定義解答即可.【題目詳解】根據a的相反數為-a即可得,1﹣的相反數是﹣1.故選B.【題目點撥】本題考查了相反數的定義,熟知相反數的定義是解決問題的關鍵.6、B【解題分析】根據圖示知,反比例函數的圖象位于第一、三象限,∴k>0,∴一次函數y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數在定義域內是增函數,∴一次函數y=kx?k的圖象經過第一、三、四象限;故選:B.7、D【解題分析】

根據把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【題目詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【題目點撥】此題主要考查了中心對稱圖形,關鍵是掌握中心對稱圖形的定義.8、B【解題分析】分析:根據線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.9、C【解題分析】

先解不等式得到x<-1,根據數軸表示數的方法得到解集在-1的左邊.【題目詳解】5+1x<1,移項得1x<-4,系數化為1得x<-1.故選C.【題目點撥】本題考查了在數軸上表示不等式的解集:先求出不等式組的解集,然后根據數軸表示數的方法把對應的未知數的取值范圍通過畫區間的方法表示出來,等號時用實心,不等時用空心.10、C【解題分析】試題解析:根據勾股定理得:斜邊為則該直角三角形能容納的圓形(內切圓)半徑(步),即直徑為6步,故選C二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】

因為是整數,且,則1n是完全平方數,滿足條件的最小正整數n為1.【題目詳解】∵,且是整數,

∴是整數,即1n是完全平方數;

∴n的最小正整數值為1.

故答案為:1.【題目點撥】主要考查了二次根式的定義,關鍵是根據乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數是非負數進行解答.12、或5或1.【解題分析】

根據以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【題目詳解】解:如圖(1)當在△ADE中,DE=5,當AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【題目點撥】本題主要考查等腰三角形的性質,注意分類討論的完整性.13、【解題分析】試題解析:設a=2t,b=3t,故答案為:14、1【解題分析】試題解析:設正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數y=經過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【題目點撥】此題主要考查了正方形的性質以及三角形內切圓的性質以及待定系數法求反比例函數解析式,根據已知求出CD的長度,進而得出DN×NO=1是解決問題的關鍵.15、且.【解題分析】試題分析:求函數自變量的取值范圍,就是求函數解析式有意義的條件,根據二次根式被開方數必須是非負數和分式分母不為0的條件,要使在實數范圍內有意義,必須且.考點:1.函數自變量的取值范圍;2.二次根式和分式有意義的條件.16、y=【解題分析】設圓的半徑是r,根據圓的對稱性以及反比例函數的對稱性可得:πr2=10π解得:r=.∵點P(3a,a)是反比例函y=(k>0)與O的一個交點,∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數的解析式是:y=.故答案是:y=.點睛:本題主要考查了反比例函數圖象的對稱性,正確根據對稱性求得圓的半徑是解題的關鍵.17、.【解題分析】試題分析:根據翻轉變換的性質得到∠AFE=∠D=90°,AF=AD=5,根據矩形的性質得到∠EFC=∠BAF,根據余弦的概念計算即可.由翻轉變換的性質可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案為:.考點:軸對稱的性質,矩形的性質,余弦的概念.三、解答題(共7小題,滿分69分)18、證明見解析.【解題分析】試題分析:首先根據等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質19、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解題分析】

(1)依據點P運動的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據函數圖象,即可得到點P運動的路程x=4時,△ABP的面積;(3)根據圖象得出BC的長,以及此時三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【題目詳解】(1)∵點P運動的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當點P運動的路程x=4時,△ABP的面積為y=2.故答案為2;(3)根據圖象得:BC=4,此時△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【題目點撥】本題考查了動點問題的函數圖象,弄清函數圖象上的信息是解答本題的關鍵.20、(1)60人;(2)144°;(3)288人.【解題分析】

等級人數除以其所占百分比即可得;先求出A等級對應的百分比,再由百分比之和為1得出C等級的百分比,繼而乘以即可得;總人數乘以A、B等級百分比之和即可得.【題目詳解】解:本次被抽取參加英語口語測試的學生共有人;

級所占百分比為,

級對應的百分比為,

則扇形統計圖中

C

級的圓心角度數為;

人,

答:估計英語口語達到

B級以上包括B

級的學生人數為288人.【題目點撥】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題也考查了樣本估計總體.21、(1)證明見解析;(2)證明見解析【解題分析】(1)根據平行線性質求出∠B=∠C,等量相減求出BE=CF,根據SAS推出兩三角形全等即可;(2)借助(1)中結論△ABE≌△DCF,可證出AE平行且等于DF,即可證出結論.證明:(1)如圖,∵AB∥CD,∴∠B=∠C.∵BF=CE∴BE=CF∵在△ABE與△DCF中,,∴△ABE≌△DCF(SAS);(2)如圖,連接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E為頂點的四邊形是平行四邊形.22、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應用】:8.【解題分析】

(1)先根據平行線的性質和等量代換得出∠1=∠3,再利用中線性質得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據平行線的性質結合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據平行四邊形的性質結合三角形的面積公式求解即可.【題目詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【題目點撥】此題重點考查學生對平行線性質,平行四邊形性質的綜合應用能力,熟練掌握平行線的性質是解題的關鍵.23、(1)0<x≤200,且x是整

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論