四川省金堂縣土橋中學2024屆中考數學適應性模擬試題含解析_第1頁
四川省金堂縣土橋中學2024屆中考數學適應性模擬試題含解析_第2頁
四川省金堂縣土橋中學2024屆中考數學適應性模擬試題含解析_第3頁
四川省金堂縣土橋中學2024屆中考數學適應性模擬試題含解析_第4頁
四川省金堂縣土橋中學2024屆中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省金堂縣土橋中學2024年中考數學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某單位組織職工開展植樹活動,植樹量與人數之間關系如圖,下列說法不正確的是()A.參加本次植樹活動共有30人 B.每人植樹量的眾數是4棵C.每人植樹量的中位數是5棵 D.每人植樹量的平均數是5棵2.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.3.共享單車為市民短距離出行帶來了極大便利.據2017年“深圳互聯網自行車發展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學記數法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×1074.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現將一飛鏢擲向該圖,則飛鏢落在陰影區域的概率為()A. B. C. D.5.甲、乙兩超市在1月至8月間的盈利情況統計圖如圖所示,下面結論不正確的是()A.甲超市的利潤逐月減少B.乙超市的利潤在1月至4月間逐月增加C.8月份兩家超市利潤相同D.乙超市在9月份的利潤必超過甲超市6.式子有意義的x的取值范圍是()A.且x≠1 B.x≠1 C. D.且x≠17.在以下三個圖形中,根據尺規作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖38.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.9.如圖,一次函數y=x﹣1的圖象與反比例函數的圖象在第一象限相交于點A,與x軸相交于點B,點C在y軸上,若AC=BC,則點C的坐標為()A.(0,1) B.(0,2) C. D.(0,3)10.罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結果影響很大.如圖是對某球員罰球訓練時命中情況的統計:下面三個推斷:①當罰球次數是500時,該球員命中次數是411,所以“罰球命中”的概率是0.822;②隨著罰球次數的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③11.在實數,,,中,其中最小的實數是()A. B. C. D.12.已知點、都在反比例函數的圖象上,則下列關系式一定正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.14.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為.15.一個不透明的口袋中有5個紅球,2個白球和1個黑球,它們除顏色外完全相同,從中任意摸出一個球,則摸出的是紅球的概率是_____.16.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內接多邊形,則∠BOM=_______.17.在函數y=x-1的表達式中,自變量x的取值范圍是.18.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結果保留π).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.20.(6分)某工廠計劃在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.求原計劃每天生產的零件個數和規定的天數.為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.21.(6分)某景區在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發,甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數表達式;乙出發后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?22.(8分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數;(2)求證:直線ED與⊙O相切.23.(8分)某校航模小組借助無人飛機航拍校園,如圖,無人飛機從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果精確到0.1米,參考數據:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)24.(10分)二次函數y=x2﹣2mx+5m的圖象經過點(1,﹣2).(1)求二次函數圖象的對稱軸;(2)當﹣4≤x≤1時,求y的取值范圍.25.(10分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).26.(12分)如圖,在平面直角坐標系中,一次函數y=﹣12x+3的圖象與反比例函數y=kx(x>0,k是常數)的圖象交于A(a,2),B(4,b)兩點.求反比例函數的表達式;點C是第一象限內一點,連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點27.(12分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內接水.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動共有30人,結論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數是4棵,結論B正確;C、∵共有30個數,第15、16個數為5,∴每人植樹量的中位數是5棵,結論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數約是4.73棵,結論D不正確.故選D.考點:1.條形統計圖;2.加權平均數;3.中位數;4.眾數.2、D【解題分析】

畫出樹狀圖得出所有等可能的情況數,找出恰好是兩個紅球的情況數,即可求出所求的概率.【題目詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【題目點撥】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.3、C【解題分析】

絕對值大于1的正數可以科學計數法,a×10n,即可得出答案.【題目詳解】n由左邊第一個不為0的數字前面的0的個數決定,所以此處n=6.【題目點撥】本題考查了科學計數法的運用,熟悉掌握是解決本題的關鍵.4、D【解題分析】

連接OC、OD、BD,根據點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據概率公式即可得出答案.【題目詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區域的概率,故選:D.【題目點撥】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規則圖形的面積轉化為求規則圖形的面積.5、D【解題分析】【分析】根據折線圖中各月的具體數據對四個選項逐一分析可得.【題目詳解】A、甲超市的利潤逐月減少,此選項正確,不符合題意;B、乙超市的利潤在1月至4月間逐月增加,此選項正確,不符合題意;C、8月份兩家超市利潤相同,此選項正確,不符合題意;D、乙超市在9月份的利潤不一定超過甲超市,此選項錯誤,符合題意,故選D.【題目點撥】本題主要考查折線統計圖,折線圖是用一個單位表示一定的數量,根據數量的多少描出各點,然后把各點用線段依次連接起來.以折線的上升或下降來表示統計數量增減變化.6、A【解題分析】根據二次根式被開方數必須是非負數和分式分母不為0的條件,要使在實數范圍內有意義,必須且.故選A.7、C【解題分析】【分析】根據角平分線的作圖方法可判斷圖1,根據圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【題目詳解】圖1中,根據作圖痕跡可知AD是角平分線;圖2中,根據作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【題目點撥】本題考查了尺規作圖,三角形全等的判定與性質等,熟知角平分的尺規作圖方法、全等三角形的判定與性質是解題的關鍵.8、D【解題分析】

根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【題目詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【題目點撥】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.9、B【解題分析】

根據方程組求出點A坐標,設C(0,m),根據AC=BC,列出方程即可解決問題.【題目詳解】由,解得或,

∴A(2,1),B(1,0),

設C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案為(0,2).【題目點撥】本題考查了反比例函數與一次函數的交點坐標問題、勾股定理、方程組等知識,解題的關鍵是會利用方程組確定兩個函數的交點坐標,學會用方程的思想思考問題.10、B【解題分析】

根據圖形和各個小題的說法可以判斷是否正確,從而解答本題【題目詳解】當罰球次數是500時,該球員命中次數是411,所以此時“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯誤;隨著罰球次數的增加,“罰球命中”的頻率總在0.2附近擺動,顯示出一定的穩定性,可以估計該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯誤.故選:B.【題目點撥】此題考查了頻數和頻率的意義,解題的關鍵在于利用頻率估計概率.11、B【解題分析】

由正數大于一切負數,負數小于0,正數大于0,兩個負數絕對值大的反而小,把這四個數從小到大排列,即可求解.【題目詳解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的實數為-2;

故選:B.【題目點撥】本題考查了實數的大小比較,關鍵是掌握:正數大于0,負數小于0,正數大于一切負數,兩個負數絕對值大的反而小.12、A【解題分析】分析:根據反比例函數的性質,可得答案.詳解:由題意,得k=-3,圖象位于第二象限,或第四象限,在每一象限內,y隨x的增大而增大,∵3<6,∴x1<x2<0,故選A.點睛:本題考查了反比例函數,利用反比例函數的性質是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、40°.【解題分析】

∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.14、1.【解題分析】試題解析:根據題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點:平移的性質.15、【解題分析】

根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.【題目詳解】解:由于共有8個球,其中紅球有5個,則從袋子中隨機摸出一個球,摸出紅球的概率是.故答案為.【題目點撥】本題考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、48°【解題分析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結合圖形計算即可.【題目詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.17、x≥1.【解題分析】

根據被開方數大于等于0列式計算即可得解.【題目詳解】根據題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【題目點撥】本題考查函數自變量的取值范圍,知識點為:二次根式的被開方數是非負數.18、4﹣π【解題分析】

由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【題目詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【題目點撥】此題考查了等腰直角三角形的性質以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解題分析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據m=FG即可得m的值;②設點F與點G的坐標,根據m=FG列出方程化簡可得出m的二次函數關系式,再根據二次函數的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側時與右側時的兩種情況,根據△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設出F,G點的坐標,再根據兩點關系列出等式化簡求解即可得F的坐標.【題目詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).綜上所述,點F的坐標為(﹣3,0)或(﹣3,).【題目點撥】本題考查了二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.20、(1)2400個,10天;(2)1人.【解題分析】

(1)設原計劃每天生產零件x個,根據相等關系“原計劃生產24000個零件所用時間=實際生產(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產的零件個數,再代入即可求得規定天數;(2)設原計劃安排的工人人數為y人,根據“(5組機器人生產流水線每天生產的零件個數+原計劃每天生產的零件個數)×(規定天數-2)=零件總數24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數.【題目詳解】解:(1)解:設原計劃每天生產零件x個,由題意得,,解得x=2400,經檢驗,x=2400是原方程的根,且符合題意.∴規定的天數為24000÷2400=10(天).答:原計劃每天生產零件2400個,規定的天數是10天.(2)設原計劃安排的工人人數為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數為1人.【題目點撥】本題考查分式方程的應用,找準等量關系是本題的解題關鍵,注意分式方程結果要檢驗.21、(1)60;(2)s=10t-6000;(3)乙出發5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解題分析】

(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數法求一次函數解析式即可;(3)分兩種情況討論即可;(4)設乙從B步行到C的速度是x米/分鐘,根據當甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【題目詳解】(1)甲的速度為60米/分鐘.(2)當20≤t≤1時,設s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發5分鐘和1分鐘時與甲在途中相遇.(4)設乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【題目點撥】本題考查了待定系數法求一次函數解析式、行程問題等知識,解題的關鍵是理解題意,讀懂圖像信息,學會構建一次函數解決實際問題,屬于中考常考題型.22、(1)∠DOA=100°;(2)證明見解析.【解題分析】試題分析:(1)根據∠CBA=50°,利用圓周角定理即可求得∠DOA的度數;(2)連接OE,利用SSS證明△EAO≌△EDO,根據全等三角形的性質可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直線ED與⊙O相切.考點:圓周角定理;全等三角形的判定及性質;切線的判定定理23、29.8米.【解題分析】

作,,根據題意確定出與的度數,利用銳角三角函數定義求出與的長度,由求出的長度,即可求出的長度.【題目詳解】解:如圖,作,,由題意得:米,米,則米,答:這架無人飛機的飛行高度為米.【題目點撥】此題考查了解直角三角形的應用﹣仰角俯角問題,熟練掌握銳角三角函數定義是解本題的關鍵.24、(1)x=-1;(2)﹣6≤y≤1;【解題分析】

(1)根據拋物線的對稱性和待定系數法求解即可;(2)根據二次函數的性質可得.【題目詳解】(1)把點(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函數y=x2﹣2mx+5m的對稱軸是x=,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴當x=﹣1時,y取得最小值﹣6,由表可知當x=﹣4時y=1,當x=﹣1時y=﹣6,∴當﹣4≤x≤1時,﹣6≤y≤1.【題目點撥】本題考查了二次函數圖象與性質及待定系數法求函數解析式,熟練掌握二次函數的圖象與性質是解題的關鍵.25、AB≈3.93m.【解題分析】

想求得AB長,由等腰三角形的三線合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函數可以求出.【題目詳解】∵AC=BC,D是AB的中點,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【題目點撥】本題考查了三角函數,直角三角形,等腰三角形等知識,關鍵利用了正切函數的定義求出AD,然后就可以求出AB.26、(1)反比例函數的表達式為y=4x(x>0);(2)點P【解題分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論