杠桿專題-新疆哈密市第四中學2024屆中考數學考前最后一卷含解析_第1頁
杠桿專題-新疆哈密市第四中學2024屆中考數學考前最后一卷含解析_第2頁
杠桿專題-新疆哈密市第四中學2024屆中考數學考前最后一卷含解析_第3頁
杠桿專題-新疆哈密市第四中學2024屆中考數學考前最后一卷含解析_第4頁
杠桿專題-新疆哈密市第四中學2024屆中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

杠桿專題-新疆哈密市第四中學2024年中考數學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC是等邊三角形,點P是三角形內的任意一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.32.下列實數為無理數的是()A.-5 B. C.0 D.π3.已知一個多邊形的內角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形4.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm25.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x16.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數為()A.90° B.120° C.270° D.360°7.如右圖,⊿ABC內接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°8.去年二月份,某房地產商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.9.如圖,甲從A點出發向北偏東70°方向走到點B,乙從點A出發向南偏西15°方向走到點C,則∠BAC的度數是()A.85° B.105° C.125° D.160°10.如圖所示的幾何體的俯視圖是()A. B. C. D.11.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.412.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知代數式2x﹣y的值是,則代數式﹣6x+3y﹣1的值是_____.14.一個多邊形,除了一個內角外,其余各角的和為2750°,則這一內角為_____度.15.已知拋物線y=-x2+mx+2-m,在自變量x的值滿足-1≤x≤2的情況下.若對應的函數值y的最大值為6,則m的值為__________.16.比較大?。篲____.(填“<“,“=“,“>“)17.如圖,在平面直角坐標系中,以坐標原點O為位似中心在y軸的左側將△OAB縮小得到△OA′B′,若△OAB與△OA′B′的相似比為2:1,則點B(3,﹣2)的對應點B′的坐標為_____.18.如圖,在平面直角坐標系中,以點O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M,N為圓心.大于MN的長為半徑畫弧,兩弧在第二象限內交于點p(a,b),則a與b的數量關系是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.20.(6分)(1)計算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡,再求值:÷(2+),其中a=.21.(6分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規作圖)22.(8分)為了解朝陽社區歲居民最喜歡的支付方式,某興趣小組對社區內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數據整理后繪成如下兩幅不完整的統計圖.請根據圖中信息解答下列問題:求參與問卷調查的總人數.補全條形統計圖.該社區中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數.23.(8分)如圖所示,在正方形ABCD中,E,F分別是邊AD,CD上的點,AE=ED,DF=DC,連結EF并延長交BC的延長線于點G,連結BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.24.(10分)某校對六至九年級學生圍繞“每天30分鐘的大課間,你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行隨機抽樣調查,從而得到一組數據.如圖是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少學生進行了抽樣調查?本次抽樣調查中,最喜歡籃球活動的有多少?占被調查人數的百分比是多少?若該校九年級共有200名學生,如圖是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請估計全校六至九年級學生中最喜歡跳繩活動的人數約為多少?25.(10分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結果保留小數點后一位,參考數據:).26.(12分)先化簡再求值:,其中,.27.(12分)在?ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求?ABCD的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

過點P作平行四邊形PGBD,EPHC,進而利用平行四邊形的性質及等邊三角形的性質即可.【題目詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【題目點撥】本題主要考查了平行四邊形的判定及性質以及等邊三角形的判定及性質,等邊三角形的性質:等邊三角形的三個內角都相等,且都等于60°.2、D【解題分析】

無理數就是無限不循環小數.理解無理數的概念,一定要同時理解有理數的概念,有理數是整數與分數的統稱.即有限小數和無限循環小數是有理數,而無限不循環小數是無理數.由此即可判定選擇項.【題目詳解】A、﹣5是整數,是有理數,選項錯誤;B、是分數,是有理數,選項錯誤;C、0是整數,是有理數,選項錯誤;D、π是無理數,選項正確.故選D.【題目點撥】此題主要考查了無理數的定義,其中初中范圍內學習的無理數有:π,2π等;開方開不盡的數;以及像0.1010010001…,等有這樣規律的數.3、D【解題分析】

根據多邊形的內角和=(n﹣2)?180°,列方程可求解.【題目詳解】設所求多邊形邊數為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【題目點撥】本題考查根據多邊形的內角和計算公式求多邊形的邊數,解答時要會根據公式進行正確運算、變形和數據處理.4、A【解題分析】

根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【題目詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【題目點撥】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.5、D【解題分析】

先根據反比例函數的解析式判斷出函數圖象所在的象限及在每一象限內函數的增減性,再根據y1<0<y2<y3判斷出三點所在的象限,故可得出結論.【題目詳解】解:∵反比例函數y=﹣中k=﹣1<0,∴此函數的圖象在二、四象限,且在每一象限內y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【題目點撥】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限是解答此題的關鍵.6、B【解題分析】

先根據圖中是三個等邊三角形可知三角形各內角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數,再根據三角形內角和定理即可得出結論.【題目詳解】∵圖中是三個等邊三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故選B.【題目點撥】考查的是等邊三角形的性質,熟知等邊三角形各內角均等于60°是解答此題的關鍵.7、A【解題分析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A8、D【解題分析】

根據題意可以用相應的代數式表示出去年二月份之前房價,本題得以解決.【題目詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【題目點撥】本題考查了列代數式,解答本題的關鍵是明確題意,列出相應的代數式.9、C【解題分析】

首先求得AB與正東方向的夾角的度數,即可求解.【題目詳解】根據題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【題目點撥】本題考查了方向角,正確理解方向角的定義是關鍵.10、D【解題分析】試題分析:根據俯視圖的作法即可得出結論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.11、C【解題分析】

設BN=x,則由折疊的性質可得DN=AN=9-x,根據中點的定義可得BD=3,在Rt△BND中,根據勾股定理可得關于x的方程,解方程即可求解.【題目詳解】設BN=x,則AN=9-x.由折疊的性質,得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【題目點撥】此題考查了折疊的性質,勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質及勾股定理是解答本題的關鍵.12、D【解題分析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】

由題意可知:2x-y=,然后等式兩邊同時乘以-3得到-6x+3y=-,然后代入計算即可.【題目詳解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案為-.【題目點撥】本題主要考查的是求代數式的值,利用等式的性質求得-6x+3y=-是解題的關鍵.14、130【解題分析】分析:n邊形的內角和是因而內角和一定是180度的倍數.而多邊形的內角一定大于0,并且小于180度,因而內角和除去一個內角的值,這個值除以180度,所得數值比邊數要小,小的值小于1.詳解:設多邊形的邊數為x,由題意有解得因而多邊形的邊數是18,則這一內角為故答案為點睛:考查多邊形的內角和公式,熟記多邊形的內角和公式是解題的關鍵.15、m=8或-【解題分析】

求出拋物線的對稱軸x=-b2a=【題目詳解】拋物線的對稱軸x=-b當m2<-1,即m<-2時,拋物線在-1≤x≤2時,y隨x的增大而減小,在x=-1時取得最大值,即y=--1當-1≤m2≤2,即-2≤m≤4時,拋物線在-1≤x≤2時,在x=當m2>2,即m>4時,拋物線在-1≤x≤2時,y隨x的增大而增大,在x=2時取得最大值,即y=-2綜上所述,m的值為8或-故答案為:8或-【題目點撥】考查二次函數的圖象與性質,注意分類討論,不要漏解.16、<【解題分析】

先比較它們的平方,進而可比較與的大小.【題目詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【題目點撥】本題考查了實數的大小比較,帶二次根號的實數,在比較它們的大小時,通常先比較它們的平方的大小.17、(-,1)【解題分析】

根據如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k進行解答.【題目詳解】解:∵以原點O為位似中心,相似比為:2:1,將△OAB縮小為△OA′B′,點B(3,?2)則點B(3,?2)的對應點B′的坐標為:(-,1),故答案為(-,1).【題目點撥】本題考查了位似變換:位似圖形與坐標,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.18、a+b=1.【解題分析】試題分析:根據作圖可知,OP為第二象限角平分線,所以P點的橫縱坐標互為相反數,故a+b=1.考點:1角平分線;2平面直角坐標系.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)x>1;(3)P(﹣,0)或(,0)【解題分析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.20、(1)5+;(2)【解題分析】試題分析:(1)先分別進行絕對值化簡,0指數冪、負指數冪的計算,特殊三角函數值、二次根式的化簡,然后再按運算順序進行計算即可;(2)括號內先通分進行加法運算,然后再進行分式除法運算,最后代入數值進行計算即可.試題解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)原式==,當a=時,原式==.21、(1)①﹣3;②;(2);(3)【解題分析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標即可;(3)根據題意將點轉化為直線,點理想值最大時點在上,分析圖形即可.【題目詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當點在與軸切點時,點的“理想值”最小為0.當點縱坐標與橫坐標比值最大時,的“理想值”最大,此時直線與切于點,設點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設直線與軸、軸的交點分別為點,點,當x=0時,y=3,當y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當與軸相切時,LQ=0,相應的圓心滿足題意,其橫坐標取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當與直線相切時,LQ=,相應的圓心滿足題意,其橫坐標取到最小值.作軸于點,則.設直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當M與ON和x軸同時相切時,半徑r最大,根據題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【題目點撥】本題是一次函數和圓的綜合題,主要考查了一次函數和圓的切線的性質,解答時要注意做好數形結合,根據圖形進行分類討論.22、(1)參與問卷調查的總人數為500人;(2)補全條形統計圖見解析;(3)這些人中最喜歡微信支付方式的人數約為2800人.【解題分析】

(1)根據喜歡支付寶支付的人數÷其所占各種支付方式的比例=參與問卷調查的總人數,即可求出結論;

(2)根據喜歡現金支付的人數(41~60歲)=參與問卷調查的總人數×現金支付所占各種支付方式的比例-15,即可求出喜歡現金支付的人數(41~60歲),再將條形統計圖補充完整即可得出結論;

(3)根據喜歡微信支付方式的人數=社區居民人數×微信支付所占各種支付方式的比例,即可求出結論.【題目詳解】(1)(人.答:參與問卷調查的總人數為500人.(2)(人.補全條形統計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數約為2800人.【題目點撥】本題考查了條形統計圖、扇形統計圖以及用樣本估計總體,解題的關鍵是:(1)觀察統計圖找出數據,再列式計算;(2)通過計算求出喜歡現金支付的人數(41~60歲);(3)根據樣本的比例×總人數,估算出喜歡微信支付方式的人數.23、(1)見解析;(2)BG=BC+CG=1.【解題分析】

(1)利用正方形的性質,可得∠A=∠D,根據已知可得AE:AB=DF:DE,根據有兩邊對應成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據相似三角形的預備定理得到△EDF∽△GCF,再根據相似的性質即可求得CG的長,那么BG的長也就不難得到.【題目詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長為4,∴ED=2,CG=6,∴BG=BC+CG=1.【題目點撥】本題考查了正方形的性質,相似三角形的判定與性質,熟練掌握相似三角形的判定與性質是解答本題的關鍵.24、(1)50(2)36%(3)160【解題分析】

(1)根據條形圖的意義,將各組人數依次相加即可得到答案;(2)根據條形圖可直接得到最喜歡籃球活動的人數,除以(1)中的調查總人數即可得出其所占的百分比;(3)用樣本估計總體,先求出九年級占全校總人數的百分比,然后求出全校的總人數;再根據最喜歡跳繩活動的學生所占的百分比,繼而可估計出全校學生中最喜歡跳繩活動的人數.【題目詳解】(1)該校對名學生進行了抽樣調查.本次調查中,最喜歡籃球活動的有人,,∴最喜歡籃球活動的人數占被調查人數的.(3),人,人.答:估計全校學生中最喜歡跳繩活動的人數約為人.【題目點撥】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論