




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西欽州市欽南區2024屆中考數學模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.2.下列各式中,計算正確的是()A. B.C. D.3.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.4.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數是()A.4 B.3 C.2 D.15.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數,則k值是()A.﹣1 B.±2 C.2 D.﹣26.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m7.在代數式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠08.一次函數與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個9.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)10.如圖,BC⊥AE于點C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點P的坐標為(2,2),點A,B分別在x軸,y軸的正半軸上運動,且∠APB=90°.下列結論:①PA=PB;②當OA=OB時四邊形OAPB是正方形;③四邊形OAPB的面積和周長都是定值;④連接OP,AB,則AB>OP.其中正確的結論是_____.(把你認為正確結論的序號都填上)12.甲、乙兩名學生練習打字,甲打135個字所用時間與乙打180個字所用時間相同,已知甲平均每分鐘比乙少打20個字,如果設甲平均每分鐘打字的個數為x,那么符合題意的方程為:______.13.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.14.如圖,在3×3的正方形網格中,點A,B,C,D,E,F,G都是格點,從C,D,E,F,G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.15.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.16.化簡代數式(x+1+)÷,正確的結果為_____.三、解答題(共8題,共72分)17.(8分)“大美濕地,水韻鹽城”.某校數學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B“的學生人數.18.(8分)(1)計算:|-1|+(2017-π)0-()-1-3tan30°+;(2)化簡:(+)÷,并在2,3,4,5這四個數中取一個合適的數作為a的值代入求值.19.(8分)為了解某校初二學生每周上網的時間,兩位學生進行了抽樣調查.小麗調查了初二電腦愛好者中40名學生每周上網的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調查了每周上網的時間.小麗與小杰整理各自樣本數據,如下表所示.時間段(小時/周)小麗抽樣(人數)小杰抽樣(人數)0~16221~210102~31663~482(1)你認為哪位學生抽取的樣本不合理?請說明理由.專家建議每周上網2小時以上(含2小時)的學生應適當減少上網的時間,估計該校全體初二學生中有多少名學生應適當減少上網的時間.20.(8分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.21.(8分)服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優惠a(0<a<20)元的價格進行優惠促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?22.(10分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.23.(12分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統計如下:命中環數678910甲命中相應環數的次數01310乙命中相應環數的次數20021(1)根據上述信息可知:甲命中環數的中位數是_____環,乙命中環數的眾數是______環;
(2)試通過計算說明甲、乙兩人的成績誰比較穩定?
(3)如果乙再射擊1次,命中8環,那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)24.(1)計算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式組,并把它的解集在數軸上表示出來.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】
根據展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【題目詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【題目點撥】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.2、C【解題分析】
接利用合并同類項法則以及積的乘方運算法則、同底數冪的乘除運算法則分別計算得出答案.【題目詳解】A、無法計算,故此選項錯誤;B、a2?a3=a5,故此選項錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項錯誤.故選C.【題目點撥】此題主要考查了合并同類項以及積的乘方運算、同底數冪的乘除運算,正確掌握相關運算法則是解題關鍵.3、D【解題分析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻4、C【解題分析】
用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【題目詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,FE=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【題目點撥】本題考查了相似三角形的判定與性質、全等三角形的判定與性質以及等腰直角三角形的相關性質,中等難度,注意合理的運用特殊值法是解題關鍵.5、D【解題分析】
根據一元二次方程根與系數的關系列出方程求解即可.【題目詳解】設方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實數根互為相反數,
∴x1+x1,=-(k1-4)=0,解得k=±1,
當k=1,方程變為:x1+1=0,△=-4<0,方程沒有實數根,所以k=1舍去;
當k=-1,方程變為:x1-3=0,△=11>0,方程有兩個不相等的實數根;
∴k=-1.
故選D.【題目點撥】本題考查的是根與系數的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.6、B【解題分析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數,然后可以求出魚線B'C'長度.【題目詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【題目點撥】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數學問題.7、D【解題分析】
根據二次根式有意義的條件即可求出答案.【題目詳解】由題意可知:解得:m≤3且m≠0故選D.【題目點撥】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.8、B【解題分析】
仔細觀察圖象,①k的正負看函數圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數圖象在上面,則哪個函數值大.【題目詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,
∴k<0正確;
②∵y2=x+a,與y軸的交點在負半軸上,
∴a<0,故②錯誤;
③當x<3時,y1>y2錯誤;
故正確的判斷是①.
故選B.【題目點撥】本題考查一次函數性質的應用.正確理解一次函數的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.9、A【解題分析】
根據位似變換的性質可知,△ODC∽△OBA,相似比是,根據已知數據可以求出點C的坐標.【題目詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.【題目點撥】本題考查的是位似變換,掌握位似變換與相似的關系是解題的關鍵,注意位似比與相似比的關系的應用.10、A【解題分析】
根據垂直的定義得到∠∠BCE=90°,根據平行線的性質求出∠BCD=55°,計算即可.【題目詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【題目點撥】本題考查的是平行線的性質和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②【解題分析】
過P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對①進行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當當OA=OB時,OA=OB=1,然后可對②作出判斷,由△APM≌△BPN可對四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據AP和PB的長度變化情況可對四邊形OAPB的周長作出判斷,求得AB的最大值以及OP的長度可對④作出判斷.【題目詳解】過P作PM⊥y軸于M,PN⊥x軸于N
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當OA=OB時,OA=OB=1,則點A、B分別與點M、N重合,此時四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.
∵OA+OB=2,PA=PB,且PA和PB的長度會不斷的變化,故周長不是定值,故③錯誤.
,∵∠AOB+∠APB=180°,
∴點A、O、B、P共圓,且AB為直徑,所以
AB≥OP,故④錯誤.
故答案為:①②.【題目點撥】本題考查了全等三角形的性質和判定,三角形的內角和定理,坐標與圖形性質,正方形的性質的應用,關鍵是推出AM=BN和推出OA+OB=OM+ON12、【解題分析】
設甲平均每分鐘打x個字,則乙平均每分鐘打(x+20)個字,根據工作時間=工作總量÷工作效率結合甲打135個字所用時間與乙打180個字所用時間相同,即可得出關于x的分式方程.【題目詳解】∵甲平均每分鐘打x個字,
∴乙平均每分鐘打(x+20)個字,
根據題意得:,
故答案為.【題目點撥】本題考查了分式方程的應用,找準等量關系,正確列出分式方程是解題的關鍵.13、5【解題分析】
由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【題目詳解】解:∵3AE=2EB,設AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【題目點撥】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關鍵.14、.【解題分析】
找出從C,D,E,F,G五個點中任意取一點組成等腰三角形的個數,再根據概率公式即可得出結論.【題目詳解】∵從C,D,E,F,G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【題目點撥】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現的結果數與所有可能出現的結果數的商是解答此題的關鍵.15、1或.【解題分析】
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,先利用勾股定理計算出AC=5,根據折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【題目詳解】當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
設BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=1.
綜上所述,BE的長為或1.
故答案為:或1.16、2x【解題分析】
根據分式的運算法則計算即可求解.【題目詳解】(x+1+)÷===2x.故答案為2x.【題目點撥】本題考查了分式的混合運算,熟知分式的混合運算順序及運算法則是解答本題的關鍵.三、解答題(共8題,共72分)17、(1)40;(2)72;(3)1.【解題分析】
(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統計圖,然后用360°乘以最想去D景點的人數所占的百分比即可得到扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)用800乘以樣本中最想去A景點的人數所占的百分比即可.【題目詳解】(1)被調查的學生總人數為8÷20%=40(人);(2)最想去D景點的人數為40﹣8﹣14﹣4﹣6=8(人),補全條形統計圖為:扇形統計圖中表示“最想去景點D”的扇形圓心角的度數為×360°=72°;(3)800×=1,所以估計“最想去景點B“的學生人數為1人.18、(1)-2(2)a+3,7【解題分析】
(1)先根據絕對值、零次方、負整數指數冪、立方根的意義和特殊角的三角函數值把每項化簡,再按照實數的運算法則計算即可;(2)先根據分式的運算法則把(+)÷化簡,再從2,3,4,5中選一個使原分式有意義的值代入計算即可.【題目詳解】(1)原式=-1+1-4-3×+2=-2;(2)原式=[-]÷=(-)÷=×=a+3,∵a≠-3,2,3,∴a=4或a=5,取a=4,則原式=7.【題目點撥】本題考查了實數的混合運算,分式的化簡求值,熟練掌握特殊角的三角函數值、負整數指數冪、分式的運算法則是解答本題的關鍵.19、(1)小麗;(2)80【解題分析】
解:(1)小麗;因為她沒有從全校初二學生中隨機進行抽查,不具有隨機性與代表性.(2).答:該校全體初二學生中有80名同學應適當減少上網的時間.20、證明見解析.【解題分析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據全等三角形的性質即可證明AC=EF.(2)根據(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【題目詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四邊形ADFE是平行四邊形.考點:1.全等三角形的判定與性質;2.等邊三角形的性質;3.平行四邊形的判定.21、(1)甲種服裝最多購進75件,(2)見解析.【解題分析】
(1)設甲種服裝購進x件,則乙種服裝購進(100-x)件,然后根據購進這100件服裝的費用不得超過7500元,列出不等式解答即可;(2)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【題目詳解】(1)設購進甲種服裝x件,由題意可知:80x+60(100-x)≤7500,解得x≤75答:甲種服裝最多購進75件,(2)設總利潤為W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①當0<a<10時,10-a>0,W隨x增大而增大,∴當x=75時,W有最大值,即此時購進甲種服裝75件,乙種服裝25件;②當a=10時,所以按哪種方案進貨都可以;③當10<a<20時,10-a<0,W隨x增大而減小.當x=65時,W有最大值,即此時購進甲種服裝65件,乙種服裝35件.【題目點撥】本題考查了一元一次方程的應用,不等式的應用,以及一次函數的性質,正確利用x表示出利潤是關鍵.22、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解題分析】
(1)由點A、B坐標利用待定系數法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據此知BG=2AG.在Rt△ABG中根據BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據正切函數定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據此求得點K(1,).待定系數法求出直線CK的解析式為y=-x+1.設點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據此得ON=m-1.再證△ONQ∽△HMQ得=.據此求得OQ=m-1.從而得出AQ=DM=6-m.結合AQ∥DM可得答案.②當m>6時,同理可得.【題目詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 特殊制定手機管理制度
- 環保消耗物資管理制度
- 現場消防設備管理制度
- 珠寶門店財務管理制度
- 瓦斯抽采鉆孔管理制度
- 生產主管績效管理制度
- 生產企業內部管理制度
- 生產員工服裝管理制度
- 生產安全費用管理制度
- 公園定向比賽活動方案
- 風險評估理論與應用課件
- 專家咨詢費(勞務費、數據采集費)支付表
- 燈具簡介課件
- 最新國家開放大學電大《兒童家庭教育指導》終結性考試大作業答案
- 玻璃深加工有限公司風險分級管控和隱患排查治理雙重預防工作機制文件
- 科室醫院感染風險評估表
- 部編(統編)版高中歷史必修《中外歷史綱要(上)》全冊教案教學設計-新教材-含教學計劃 教學進度 培優補差計劃-
- 上鐵運發號鐵路局常用調度命令用語附件
- 餐廚廢棄物資源化利用和無害化處理項目可行性研究報告
- 綠色農村人居環境整治建設宜居美麗鄉村環境整治是關鍵動態PPT模板
- LANTEK蘭特鈑金軟件手冊(下)
評論
0/150
提交評論