




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省龍巖市龍巖二中2023-2024學年高二數學第一學期期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.2.已知兩個向量,若,則的值為()A. B.C.2 D.83.在數列中,若,則稱為“等方差數列”,下列對“等方差數列”的判斷,其中不正確的為()A.若是等方差數列,則是等差數列 B.若是等方差數列,則是等方差數列C.是等方差數列 D.若是等方差數列,則是等方差數列4.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.815.丹麥數學家琴生(Jensen)是19世紀對數學分析作出卓越貢獻的巨人,特別是在函數的凸凹性與不等式方面留下了很多寶貴的成果.設函數在區間內的導函數為,在區間內的導函數為,在區間內恒成立,則稱函數在區間內為“凸函數”,則下列函數在其定義域內是“凸函數”的是()A. B.C. D.6.已知函數,其中e是自然數對數的底數,若,則實數a的取值范圍是A. B.C. D.7.已知直線與直線垂直,則()A. B.C. D.8.下列命題中是真命題的是()A.“”是“”的充分非必要條件B.“”是“”的必要非充分條件C.在中“”是“”的充分非必要條件D.“”是“”的充要條件9.設等差數列的前項和為,已知,,則的公差為()A.2 B.3C.4 D.510.若,則的值為()A.或 B.或C.1 D.-111.漸近線方程為的雙曲線的離心率是()A.1 B.C. D.212.已知等差數列,,則公差d等于()A. B.C.3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標準方程為________14.若,m,三個數成等差數列,則圓錐曲線的離心率為______15.若直線與直線平行,則________.16.已知函數是函數的導函數,,對任意實數都有,則不等式的解集為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列{}滿足a1=1,a3+a7=18,且(n≥2)(1)求數列{}的通項公式;(2)若=·,求數列的前n項和18.(12分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍19.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學等選科考試,其中600名學生化學成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構成等差數列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數;(3)估計這600名學生化學成績的平均值(同一組中的數據用該組區間的中點值作代表)和中位數(中位數精確到0.1)20.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環保、節能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產業發展的方向.工業部表示,到2025年中國的汽車總銷量將達到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設備的維修保養費用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時,年平均利潤最大21.(12分)已知斜率為的直線與橢圓:交于,兩點(1)若線段的中點為,求的值;(2)若,求證:原點到直線的距離為定值22.(10分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點M是線段PD上的一點,且,當三棱錐的體積為1時,求實數的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據所給的圖形和一組基底,從起點出發,把不是基底中的向量,用是基底的向量來表示,就可以得到結論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發,沿著空間圖形的棱走到終點,若出現不是基底中的向量的情況,再重復這個過程,屬于基礎題2、B【解析】直接利用空間向量垂直的坐標運算計算即可.【詳解】因為,所以,即,解得.故選:B3、B【解析】根據等方差數列的定義逐一進行判斷即可【詳解】選項A中,符合等差數列的定義,所以是等差數列,A正確;選項B中,不是常數,所以不是等方差數列,選項B錯誤;選項C中,,所以是等方差數列,C正確;選項D中,所以是等方差數列,D正確故選:B4、A【解析】根據條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A5、B【解析】根據基本初等函數的導函數公式求各函數二階導函數,判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內有正有負,故不是“凸函數”;B:,則,故是“凸函數”;C:,則,故不是“凸函數”;D:,則,顯然定義域內有正有負,故不是“凸函數”;故選:B6、B【解析】利用函數的奇偶性將函數轉化為f(M)≤f(N)的形式,再利用單調性脫去對應法則f,轉化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數f(x)為奇函數故原不等式f(a﹣1)+f(2a2)≤0,可轉化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數f(x)單調遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數的奇偶性和單調性的判定及應用,考查了不等式的解法,屬于中檔題7、D【解析】根據互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D8、B【解析】根據充分條件、必要條件、充要條件的定義依次判斷.【詳解】當時,,非充分,故A錯.當不能推出,所以非充分,,所以是必要條件,故B正確.當在中,,反之,故為充要條件,故C錯;當時,,,,充分條件,因為,當時成立,非必要條件,故D錯.故選:B.9、B【解析】由以及等差數列的性質,可得的值,再結合即可求出公差.【詳解】解:,得,,又,兩式相減得,則.故選:B.10、B【解析】求出函數的導數,由方程求解即可.【詳解】,,解得或,故選:B11、B【解析】根據雙曲線漸近線方程可確定a,b的關系,進而求得離心率.【詳解】因為雙曲線近線方程為,故雙曲線為等軸雙曲線,則a=b,故離心率為,則,故選:B.12、B【解析】根據題意,利用公式,即可求解.【詳解】由題意,等差數列,,可得等差數列的公差.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據漸近線方程、焦距可得,,再根據雙曲線參數關系、焦點的位置寫出雙曲線標準方程.詳解】由題設,可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標準方程為.故答案為:.14、【解析】由等差中項的性質求參數m,即可得曲線標準方程,進而求其離心率.【詳解】由題意,,可得,所以圓錐曲線為,則,,故.故答案為:.15、【解析】根據直線平行的充要條件即可求出【詳解】當時,顯然兩直線不平行,所以依題有,解得故答案為:16、【解析】令則,∴在R上是減函數又等價于∴故不等式的解集是答案:點睛:本題考查用構造函數的方法解不等式,即通過構造合適的函數,利用函數的單調性求得不等式的解集,解題時要注意常見的函數類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構造函數;(2)對于,可構造函數三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由等差中項可知數列是等差數列,根據已知可求得其公差,從而可得其通項公式;(2)分析可知應用錯位相減法求數列的和【詳解】(1)由知,數列是等差數列,設其公差為,則,所以,,即數列的通項公式為(2),,,兩式相減得:,整理得:,所以18、(1)(2)【解析】(1)根據橢圓的長軸和離心率,可求得,進而得橢圓方程;(2)先判斷直線斜率為正,然后設出直線方程,和橢圓方程聯立,整理得根與系數的關系,利用直線方程求出點S、T的坐標,再根據確定的表達式,將根與系數的關系式代入化簡,求得結果.【小問1詳解】由題意可得:解得:,所以橢圓的方程:【小問2詳解】當直線l的傾斜角為銳角時,設,設直線,由得,從而,又,得,所以,又直線的方程是:,令,解得,所以點S為;直線的方程是:,同理點T為·所以,因為,所以,所以∵,∴,綜上,所以的范圍是19、(1)(2)90(3)平均值69.5;中位數69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數與中位數的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數為:【小問3詳解】平均值為,設中位數為x,則故中位數為69.420、(1)公司從第3年開始獲利;(2)第9年時每臺充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數列,然后求解利潤的表達式,推出表達式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養費用是以1100為首項,400為公差的等差數列,設第n年時累計利潤為f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),開始獲利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司從第3年開始獲利;(2)每臺充電樁年平均利潤為當且僅當,即n=9時,等號成立即在第9年時每臺充電樁年平均利潤最大3600元【點睛】本題考查數列與函數的實際應用,基本不等式的應用,考查轉化思想以及計算能力,是中檔題21、(1);(2)證明見解析.【解析】(1)設出兩點的坐標,利用點差法即可求出的值;(2)設出直線的方程,與橢圓方程聯立,寫韋達;根據,求出,從而可證明原點到直線的距離為定值【小問1詳解】設,則,,兩式相減,得,即,所以,即,又因為線段的中點為,所以,即;【小問2詳解】設斜率為的直線為,,由,得,所以,,因為,所以,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司條線活動方案
- 公司紀念品策劃方案
- 公司精神文明活動方案
- 公司節日年度策劃方案
- 公司愛心衛生間活動方案
- 公司節約能源活動方案
- 公司果園維護活動方案
- 公司求婚驚喜策劃方案
- 公司核心競爭力活動方案
- 公司芽莊旅游策劃方案
- 2023年中國銀行業協會招聘筆試參考題庫附帶答案詳解
- 2023年安龍縣體育教師招聘筆試模擬試題及答案
- JJF 1139-2005計量器具檢定周期確定原則和方法
- GB/T 27922-2011商品售后服務評價體系
- 生物科技有限公司外勤出差申請表
- GA/T 1567-2019城市道路交通隔離欄設置指南
- LX電動單梁懸掛說明書介紹
- 消防水池檢查記錄
- 航天器用j30jh系列微型矩形電連接器
- 拆除新建橋梁鉆孔樁專項施工方案
- 技工序列考評、評聘管理辦法
評論
0/150
提交評論