安徽省六安市一中2023-2024學年高二數學第一學期期末復習檢測模擬試題含解析_第1頁
安徽省六安市一中2023-2024學年高二數學第一學期期末復習檢測模擬試題含解析_第2頁
安徽省六安市一中2023-2024學年高二數學第一學期期末復習檢測模擬試題含解析_第3頁
安徽省六安市一中2023-2024學年高二數學第一學期期末復習檢測模擬試題含解析_第4頁
安徽省六安市一中2023-2024學年高二數學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省六安市一中2023-2024學年高二數學第一學期期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數共有()A.4條 B.3條C.2條 D.1條2.將上各點的縱坐標不變,橫坐標變為原來的2倍,得到曲線C,若直線l與曲線C交于A,B兩點,且AB中點坐標為M(1,),那么直線l的方程為()A. B.C. D.3.設等差數列的前n項和為,且,則()A.64 B.72C.80 D.1444.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.5.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.6.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.78.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個數為()A.0個 B.1個C.2個 D.3個9.在平面直角坐標系中,橢圓的左、右焦點分別為,,過且垂直于軸的直線與交于,兩點,與軸交于點,,則的離心率為()A. B.C. D.10.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.11.若某群體中成員只用現金支付的概率為,既用現金支付也用非現金支付的概率為,則不用現金支付的概率為()A. B.C. D.12.已知雙曲線的左、右焦點分別為,半焦距為c,過點作一條漸近線的垂線,垂足為P,若的面積為,則該雙曲線的離心率為()A.3 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數列前3項的和為30,前6項的和為100,則它的前9項的和為______.14.已知對任意正實數m,n,p,q,有如下結論成立:若,則有成立,現已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______15.某班名學生期中考試數學成績的頻率分布直方圖如圖所示.根據頻率分布直方圖,估計該班本次測試平均分為______16.等比數列的前n項和,則的通項公式為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標準方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程18.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.19.(12分)過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2)(1)求圓C的標準方程;(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式20.(12分)在平面直角坐標系xOy中,直線l的參數方程為(t為參數),直線l與x軸交于點P.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于A,B兩點,求的值21.(12分)已知函數,.(1)討論函數的單調性;(2)若不等式在上恒成立,求實數的取值范圍.22.(10分)如圖,四棱錐P-ABCD的底面是矩形,底面ABCD,,M為BC中點,且.(1)求BC;(2)求二面角A-PM-B的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用雙曲線漸近線的性質,結合一元二次方程根的判別式進行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設過的切線方程為與雙曲線聯立,可得,由,即,解得,直線的條數為1.綜上可得,直線的條數為4.故選:A,.2、A【解析】先根據題意求出曲線C的方程,然后利用點差法求出直線l的斜率,從而可求出直線方程【詳解】設點為曲線C上任一點,其在上對應在的點為,則,得,所以,所以曲線C的方程為,設,則,兩方程相減整理得,因為AB中點坐標為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A3、B【解析】利用等差數列下標和性質,求得,再用等差數列前項和公式即可求解.【詳解】根據等差數列的下標和性質,,解得,.故選:B.4、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.5、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關系時,往往結合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經過兩圓的圓心的直線方程)可減小運算量.6、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據“小推大”原則進行判斷即可.【詳解】因為方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.7、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.8、B【解析】先判斷出原命題和逆命題的真假,進而根據互為逆否的兩個命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.9、B【解析】由題意結合幾何性質可得為等腰三角形,且,所以,求出的長,結合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點,則為的中點,又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B10、D【解析】利用向量的數量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.11、A【解析】利用對立事件的概率公式可求得所求事件的概率.【詳解】由對立事件概率公式可知,該群體中的成員不用現金支付的概率為.故選:A.12、D【解析】根據給定條件求出,再計算面積列式計算作答.【詳解】依題意,點,由雙曲線對稱性不妨取漸近線,即,則,令坐標原點為O,中,,又點O是線段的中點,因此,,則有,即,,,所以雙曲線的離心率為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、210【解析】依題意,、、成等差數列,從而可求得答案【詳解】∵等差數列{an}的前3項和為30,前6項和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點睛】本題考查等差數列的性質,熟練利用、、成等差數列是關鍵,屬于中檔題14、【解析】根據正弦定理,結合題意,列出方程,代入數據,化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:15、【解析】將每個矩形底邊的中點值乘以對應矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.16、【解析】利用的關系,結合是等比數列,即可求得結果.【詳解】因為,故當時,,則,又當時,,因為是等比數列,故也滿足,即,故,此時滿足,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據橢圓的定義即可判斷并求解;(2)根據點差法即可求解中點弦斜率和中點弦方程.【小問1詳解】設,,E(x,y),∵,,且,點的軌跡是以,為焦點,長軸長為4的橢圓設橢圓C的方程為,記,則,,,,,曲線的標準方程為【小問2詳解】根據橢圓對稱性可知直線l斜率存在,設,則,由①-②得,,∴l:,即.18、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,19、(1);(2)【解析】(1)設圓的標準方程為:,則分別代入原點和,得到方程組,解出即可得到;(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,則分別討論斜率存在與否,運用直線與圓相切的條件:,解方程即可得到所求直線方程.【詳解】(1)設圓C的標準方程為,則分別代入原點和,得到,解得則圓的標準方程為(2)由(1)得到圓心為,半徑,由于直線過點與圓相切,當時,到的距離為2,不合題意,舍去;當斜率存在時,設,由直線與圓相切,得到,即有,解得,故直線,即為點睛:本題考查直線與圓位置關系,考查圓的方程的求法和直線與圓相切的條件,考查運算能力,屬于中檔題;圓的方程有一般形式與標準形式,在該題中利用待定系數法將其設為標準形式,列、解出方程組即可;當直線與圓相切時等價于圓心到直線的距離等于半徑,已知直線上一點寫出直線的方程需注意斜率不存在的情形.20、(1)直線l的普通方程,曲線C的直角坐標方程(2)【解析】(1)直接利用轉換關系,在參數方程、極坐標方程和直角坐標方程之間進行轉換;(2)利用一元二次方程根和系數關系式的應用求出結果【小問1詳解】解:直線的參數方程為為參數),轉換為直角坐標方程,曲線的極坐標方程為,根據,轉換為直角坐標方程為;小問2詳解】直線轉換為參數方程為為參數),代入,得到,所以,,所以21、(1)時,函數在單調遞增,無減區間;時,函數在單調遞增,在單調遞減.(2).【解析】(1)對求導得到,分和進行討論,判斷出的正負,從而得到的單調性;(2)設函數,分和進行討論,根據的單調性和零點,得到答案.【詳解】解:(1)函數定義域是,,當時,,函數在單調遞增,無減區間;當時,令,得到,即,所以,,單調遞增,,,單調遞減,綜上所述,時,函數在單調遞增,無減區間;時,函數在單調遞增,在單調遞減.(2)由已知在恒成立,令,,可得,則,所以在遞增,所以,①當時,,在遞增,所以成立,符合題意.②當時,,當時,,∴,使,即時,在遞減,,不符合題意.綜上得【點睛】本題考查利用導數討論函數的單調性,根據導數解決不等式恒成立問題,屬于中檔題.22、(1);(2).【解析】(1)根據給定條件推導證得,再借助

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論