浙江省亳州市2022-2023學年高三二診熱身考試數學試題_第1頁
浙江省亳州市2022-2023學年高三二診熱身考試數學試題_第2頁
浙江省亳州市2022-2023學年高三二診熱身考試數學試題_第3頁
浙江省亳州市2022-2023學年高三二診熱身考試數學試題_第4頁
浙江省亳州市2022-2023學年高三二診熱身考試數學試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省亳州市2022-2023學年高三二診熱身考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.2.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()3.設等差數列的前項和為,若,,則()A.21 B.22 C.11 D.124.某學校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數據分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是()A.56 B.60 C.140 D.1205.已知集合,則集合真子集的個數為()A.3 B.4 C.7 D.86.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.7.已知函數,存在實數,使得,則的最大值為()A. B. C. D.8.已知,,分別為內角,,的對邊,,,的面積為,則()A. B.4 C.5 D.9.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件10.函數在上單調遞增,則實數的取值范圍是()A. B. C. D.11.已知集合,則()A. B.C. D.12.若復數滿足,則(其中為虛數單位)的最大值為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的各項均為正數,,且,若,則________.14.根據如圖所示的偽代碼,輸出的值為______.15.已知復數(為虛數單位)為純虛數,則實數的值為_____.16.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若不等式有解,求實數的取值范圍;(2)函數的最小值為,若正實數,,滿足,證明:.18.(12分)已知函數.(1)若函數的圖象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.19.(12分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.20.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.21.(12分)已知橢圓過點,設橢圓的上頂點為,右頂點和右焦點分別為,,且.(1)求橢圓的標準方程;(2)設直線交橢圓于,兩點,設直線與直線的斜率分別為,,若,試判斷直線是否過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.22.(10分)已知函數,(1)若,求的單調區間和極值;(2)設,且有兩個極值點,,若,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.2、B【解析】

如圖所示:連接,根據垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.3、A【解析】

由題意知成等差數列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數列,可知也成等差數列,所以,即,解得.故選:A.【點睛】本題考查了等差數列的性質,考查了等差中項.對于等差數列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數列性質,可使得計算量大大減少.4、C【解析】

試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應用.5、C【解析】

解出集合,再由含有個元素的集合,其真子集的個數為個可得答案.【詳解】解:由,得所以集合的真子集個數為個.故選:C【點睛】此題考查利用集合子集個數判斷集合元素個數的應用,含有個元素的集合,其真子集的個數為個,屬于基礎題.6、D【解析】

根據為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.7、A【解析】

畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.8、D【解析】

由正弦定理可知,從而可求出.通過可求出,結合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數的基本關系.本題的關鍵是通過正弦定理結合已知條件,得到角的正弦值余弦值.9、C【解析】

利用數量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數量積的應用,考查推理能力與計算能力,屬于基礎題.10、B【解析】

對分類討論,當,函數在單調遞減,當,根據對勾函數的性質,求出單調遞增區間,即可求解.【詳解】當時,函數在上單調遞減,所以,的遞增區間是,所以,即.故選:B.【點睛】本題考查函數單調性,熟練掌握簡單初等函數性質是解題關鍵,屬于基礎題.11、C【解析】

由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.12、B【解析】

根據復數的幾何意義可知復數對應的點在以原點為圓心,1為半徑的圓上,再根據復數的幾何意義即可確定,即可得的最大值.【詳解】由知,復數對應的點在以原點為圓心,1為半徑的圓上,表示復數對應的點與點間的距離,又復數對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數模的定義及其幾何意義應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設等差數列的公差為,根據,且,可得,解得,進而得出結論.【詳解】設公差為,因為,所以,所以,所以故答案為:【點睛】本題主要考查了等差數列的通項公式、需熟記公式,屬于基礎題.14、7【解析】

表示初值S=1,i=1,分三次循環計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環:S=1+1=2,i=1+2=3;第二次循環:S=2+3=5,i=3+2=5;第三次循環:S=5+5=10,i=5+2=7;S=10>9,循環結束,輸出:i=7.故答案為:7【點睛】本題考查在程序語句的背景下已知輸入的循環結構求輸出值問題,屬于基礎題.15、【解析】

利用復數的乘法求解再根據純虛數的定義求解即可.【詳解】解:復數為純虛數,解得.故答案為:.【點睛】本題主要考查了根據復數為純虛數求解參數的問題,屬于基礎題.16、【解析】

先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設,∴在上單調遞減,在上單調遞增.故.∵有解,∴.即的取值范圍為.(2),當且僅當時等號成立.∴,即.∵.當且僅當,,時等號成立.∴,即成立.【點睛】此題考查不等式的證明,注意定值乘變化的靈活應用,屬于較易題目.18、(1)(2)【解析】

(1)求出及其導函數,利用研究的單調性和最值,根據零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導函數,由研究的單調性,通過分類討論可得的單調性得出結論.【詳解】解(1)函數所以討論:①當時,無零點;②當時,,所以在上單調遞增.取,則又,所以,此時函數有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調遞減;當時,所以在上單調遞增.據題意,得,所以(舍)或綜上,所求實數的取值范圍為.(2)令,根據題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數.又函數在上單調遞增,在上單調遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數,據①求解知,不符合題意.③若,則當時,恒有,故在上是減函數,于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數的取值范圍是.【點睛】本題考查函數零點問題,考查不等式恒成立問題,考查用導數研究函數的單調性.解題關鍵是通過分類討論研究函數的單調性.本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力.19、(1);(2).【解析】

(1)將代入函數的解析式,將函數的及解析式變形為分段函數,利用二次函數的基本性質可求得函數的值域;(2)由參變量分離法得出在區間內有解,分和討論,求得函數的最大值,即可得出實數的取值范圍.【詳解】(1)當時,.當時,;當時,.函數的值域為;(2)不等式等價于,即在區間內有解當時,,此時,,則;當時,,函數在區間上單調遞增,當時,,則.綜上,實數的取值范圍是.【點睛】本題主要考查含絕對值函數的值域與含絕對值不等式有解的問題,利用絕對值的應用將函數轉化為二次函數,結合二次函數的性質是解決本題的關鍵,考查分類討論思想的應用,屬于中等題.20、(1)證明見解析.(2)【解析】

(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉化為面面垂直,而點到面的距離常用體積轉化來求,屬于中檔題21、(1)(2)直線過定點,該定點的坐標為.【解析】

(1)因為橢圓過點,所以①,設為坐標原點,因為,所以,又,所以②,將①②聯立解得(負值舍去),所以橢圓的標準方程為.(2)由(1)可知,設,.將代入,消去可得,則,,,所以,所以,此時,所以,此時直線的方程為,即,令,可得,所以直線過定點,該定點的坐標為.22、(1)增區間為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論