




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、普遍調查含義與基本原則方法與步驟特點一、普遍調查含義與基本原則1(一)普遍調查的意義與基本原則定義:普查,是對研究對象總體的全部單位逐一進行的調查,是為了解一定時點的社會現象而專門組織的一次性調查基本原則:1、對象總體與調查單位總數相同2、調查同一時點的社會現象3、調查指標簡明4、各調查點須同時進行,并在盡可能短的時間內完成5、盡可能按一定的周期進行(一)普遍調查的意義與基本原則定義:普查,是對研究對象總體的2(二)普查的方法與步驟組織方法:1、組織專門的普查機構,有專門的普查員對總體各單位進行調查2、制定調查表,由各單位根據已有資料填報搜集資料方法:1、頒發統一制定的調查表,由各地區各單位自行填報2、派調查人員詢問被調查者,搜集有關資料3、由調查人員直接對調查單位進行觀察與計量步驟(略)(二)普查的方法與步驟組織方法:3(三)普查特點資料全面準確工作量大,代價高調查內容有限(三)普查特點資料全面準確4二、抽樣調查含義與基本概念作用及基本機理一般程序概率抽樣非概率抽樣二、抽樣調查含義與基本概念5(一)抽樣調查的意義與基本概念定義:抽樣調查是從被調查的總體中抽取一部分單位作為樣本進行觀察,并以這部分樣本的特征值推算總體的特征值的一種方法。廣義地講,抽樣調查包括概率抽樣與非概率抽樣。狹義地說,抽樣調查就是概率抽樣。(一)抽樣調查的意義與基本概念定義:抽樣調查是從被調查的總體6抽樣調查的有關基本概念:1、總體:所有調查研究的全部事物,叫全及總體,簡稱總體。總體可分為人工總體和自然總體。2、樣本:在總體中被抽取出來的一部分單位,叫做樣本。樣本中的單位,叫樣本單位。樣本中含有單位的數目,叫樣本數量。抽樣調查的有關基本概念:73、綜合指標:抽樣調查的主要任務是用抽樣所得來的資料來求出綜合指標,然后再用這些指標來推斷總體的相應的綜合指標。常用的綜合指標包括平均指標(平均數)、相對指標(相對數)、總量指標(總數或總和)4、樣本平均數。從樣本中各單位的數量標識中所計算出來的算術平均數,叫做樣本平均數(又稱抽樣平均數)3、綜合指標:抽樣調查的主要任務是用抽樣所得來的資料來求出綜85、總體平均數:總體中各單位的數量標識的算術平均數,叫做總體平均數。在抽樣調查中,總體平均數一般是從樣本平均數推斷而來的。6、樣本頻率:在樣本中具有某種屬性的單位數目所占樣本數目的比重,叫做樣本頻率。P7、總體頻率:在總體中具有某種屬性的單位數目所占的比重,叫做總體頻率。5、總體平均數:總體中各單位的數量標識的算術平均數,叫做總體98、抽樣框:在抽取樣本之前,把總體各單位區別開來并作出一覽表,每個單位只列入一次,這一覽表就叫做抽樣框。8、抽樣框:在抽取樣本之前,把總體各單位區別開來并作出一覽表109、大樣本:所謂樣本大小是指樣本中所含的單位數目的多少。一般說來,單位數在30個或30個以上,就是大樣本。單位數在30個以下的,就是小樣本。抽樣調查特點之一就是使用大樣本。對于同一總體,要求推論的精確度越高,則樣本數目就相對需要越多。10、重復抽樣與不重復抽樣:9、大樣本:所謂樣本大小是指樣本中所含的單位數目的多少。一般1111、樣本誤差:樣本綜合指標的值與相應的總體綜合指標的值可能相差范圍,叫做抽樣誤差。抽樣誤差是指由于抽樣的隨機性而產生的代表性誤差。代表性誤差的大小,取決于:(1)總體各單位之間的差異程度(2)抽樣數目(3)抽樣的組織形式11、樣本誤差:樣本綜合指標的值與相應的總體綜合指標的值可能12按簡單隨機重復抽樣方法,抽樣平均誤差的計算公式是:按簡單隨機重復抽樣方法,抽樣平均誤差的計算公式是:13在不重復抽樣條件下,平均數抽樣誤差計算公式是:成數不重復抽樣誤差的計算公式:在不重復抽樣條件下,平均數抽樣誤差計算公式是:成數不重復抽樣14方差的計算公式:標準差的計算公式:方差的計算公式:標準差的計算公式:15例1:從某廠生產的10000只日光燈管中隨機抽取100只進行檢查,假如該廠日光燈管平均使用壽命的標準差為100小時,試計算該廠日光燈管平均使用壽命的抽樣平均誤差。例2:從某廠生產的100000件產品中,隨機抽取1000件進行檢查,測得有85件不合格。試計算產品合格率的抽樣平均誤差。例1:從某廠生產的10000只日光燈管中隨機抽取100只進行1612、樣本容量:即必要的樣本數目。取決于如下因素:(1)總體各單位之間的差異程度(即方差)(2)允許誤差,即極限抽樣誤差,或稱最大可能誤差。允許誤差(?)同概率度(t)、抽樣誤差(
)的大小有關。?=t
(3)抽樣的組織形式12、樣本容量:即必要的樣本數目。取決于如下因素:17(二)抽樣調查的作用及基本機理
1、抽樣調查的基本作用:向人們提供了一種實現“由部分認識總體”這一目標的途徑和手段。了解總體,同時節省時間與經費(二)抽樣調查的作用及基本機理1、抽樣調查的基本作用:182、抽樣調查的基本機理概率論原理隨機原則(同等可能性原則)根據概率論原理,雖然總體中被抽取樣本的個別單位各有差異,但當抽取的樣本單位數足夠多時,個別單位之間的差別會趨于相互抵消,因而“樣本”的平均數接近總體平均數,從部分可以說明總體,這也即所謂大數定律或大數法則。如拋擲硬幣。在各種隨機事件的背后,存在著事件發生的客觀概率。正是這種概率決定著隨機事件的發展變化規律。概率抽樣之所以能夠保證樣本對總體的代表性,其基本原理就在于它能夠很好地按總體內在結構中所蘊涵的各種隨機事件的概率來構成樣本,使樣本成為總體的縮影。
2、抽樣調查的基本機理概率論原理19(三)一般程序略(三)一般程序略20(四)概率抽樣含義:概率抽樣就是按照隨機原則在總體中選取一部分單位進行調查觀察,并進一步推算總體情況的方法概率抽樣的原則:必須在完全排除人們的主觀意見與判斷,用碰著機會的方式在總體中抽取若干單位作為樣本。(四)概率抽樣含義:概率抽樣就是按照隨機原則在總體中選取一部211、簡單隨機抽樣含義:簡單隨機抽樣,是對總體的單位不進行任何組合,僅按照隨機原則直接抽取樣本的方法步驟:(1)把研究對象總體的各單位編上數字號碼。(2)隨機地抽取必要數目的樣本。方法:(1)隨機數表法(2)抽簽法(3)直接抽選法1、簡單隨機抽樣含義:簡單隨機抽樣,是對總體的單位不進行任何22如何確定必要的樣本數目?反映具有一個特定變數的總體值所需要的樣本數,取決于總體的大?。∟)、該總體內該變數的差異程度(方差)、允許誤差(⊿)、置信水平F(t)、以及是否重復抽樣如何確定必要的樣本數目?反映具有一個特定變數的總體值所需要的23在簡單隨機重復抽樣中,確定必要的樣本數目的計算公式是在簡單隨機重復抽樣中,確定必要的樣本數目的計算公式是24簡單隨機不重復抽樣條件下確定必要樣本數目的計算公式:簡單隨機不重復抽樣條件下確定必要樣本數目的計算公式:25例1:已知某市職工人均月收入的標準差為20元。如果要求置信水平95.45%,允許誤差為1元,問:在簡單隨機重復抽樣條件下,需抽取的必要樣本數為多少?例2:在一個擁有10萬工人的城市進行工人狀況調查,已知工人平均月收入的標準差為20元。如果要求置信水平95.45%,允許誤差為1元,問:在簡單隨機重復抽樣條件下,需抽取的必要樣本數為多少?在簡單隨機不重復抽樣的條件下,需抽取的必要樣本數為多少?例1:已知某市職工人均月收入的標準差為20元。如果要求置信水26課堂作業:電視臺為了解戲曲節目收視率,擬進行一次抽樣調查。根據50戶的試調查,收視率為68%,現要求抽樣結果誤差不超過5%,F(t)=95%,求所需的樣本容量課堂作業:272、等距隨機抽樣(1)概念:等距離隨機抽樣,又稱機械抽樣或系統抽樣,先在總體中按一定標志把個體順序排列,并根據總體單位數和樣本單位數計算出抽樣距離,然后按相同的距離或間隔抽選樣本單位。2、等距隨機抽樣(1)概念:等距離隨機抽樣,又稱機械抽樣或系28(2)等距隨機抽樣操作步驟(1)對總體編號:將N個總體單位按一定順序排列,編上序號;(2)確定抽樣間隔:根據總體單位數N和樣本單位數n計算出抽樣間隔K(必須是整數),K=N/n;(3)確定起始抽號數:在1和K之間隨機選一個數字,稱為隨機起點B;一般來說,1≤B≤K,B=(K+1)/2,K為奇數時
B=(K+2)/2,K為偶數時(4)確定抽取單位:按抽樣間隔,作等距抽樣,直到抽滿所需樣本數目為止。根據B和K從總體中抽取n個樣本單位。選中的樣本單位號碼依次為:B,B+K,B+2K,B+3K,…,B+(n-1)K。(2)等距隨機抽樣操作步驟(1)對總體編號:將N個總體單位按29(3)必要樣本數目的確定公式同簡單隨機不重復抽樣公式例:已知某市職工為10萬人,人均月收入的標準差為20元,如果要求置信水平為95.45%,允許誤差為1元,問:(1)使用等距抽樣需抽取多少人為調查對象?(2)如何進行等距抽樣?(3)必要樣本數目的確定公式同簡單隨機不重復抽樣公式303、類型隨機抽樣(1)概念:類型隨機抽樣,又稱分層隨機抽樣或分類抽樣,是把調查總體按其屬性不同分為若干層次(類型),然后在各層中隨機抽取樣本?!睢鳌酢鳌醴诸?/p>
☆☆☆☆隨機抽樣☆☆☆☆□△☆☆☆☆☆□△□☆☆□□□□□□□☆□□△□□□□☆☆△△□△△△△△△△△△△3、類型隨機抽樣(1)概念:類型隨機抽樣,又稱分層隨機抽樣或31(2)必要抽樣數目的確定類型隨機不重復抽樣:(2)必要抽樣數目的確定類型隨機不重復抽樣:32類型隨機重復抽樣的必要樣本數目類型隨機重復抽樣的必要樣本數目33例:假定某公司工人的月基本工資如下表所列,允許誤差為0.5元,置信水平為95.45%,求應抽取多少必要的工人工資的樣本單位數目?月基本工資(元)工人數52.567.582.597.5112.5127.575511301600930205190總計4810例:假定某公司工人的月基本工資如下表所列,允許誤差為0.5元34(3)等比例分層抽樣與不等比例分層抽樣等比例分層抽樣就是把總體分層后,在每個層中抽取樣本單位的比例是相同的。不等比例分層抽樣就是把總體分層后,在每個層中抽取樣本單位的比例是不相同的(3)等比例分層抽樣與不等比例分層抽樣等比例分層抽樣就是把總35例:某縣共有農戶30萬戶,其中純務農戶10萬戶,兼業戶為15萬戶,純務工戶5萬戶。問如何使用等比例分層抽樣方法抽取3000戶進行家庭狀況調查?例:某縣共有農戶30萬戶,其中純務農戶10萬戶,兼業戶為15364、整群抽樣(1)概念:在總體中不是一個一個地抽取個別單位,而是隨機地一群一群地抽取集體單位,加以觀察和研究,由此推斷總體的情況,這種抽樣叫整群隨機抽樣。4、整群抽樣(1)概念:在總體中不是一個一個地抽取個別單位,37(2)方法將總體分成若干小群體。(自然地理區域或社會組織結構)在若干小群體中隨機抽取一定數量的小群體對抽取的小群體中每一個單位逐個進行調查(2)方法將總體分成若干小群體。(自然地理區域或社會組織結構38(3)原則子群體之間的差異程度盡量小子群體內部的差異程度應盡量大(3)原則子群體之間的差異程度盡量小39(4)必要樣本數目確定不重復整群抽樣必要樣本數目公式(4)必要樣本數目確定不重復整群抽樣必要樣本數目公式40例:某縣有600個村,各村間農戶收入的方差為20元,抽樣平均誤差為正負2元,問要求置信水平達到95.45%時,使用不重復整群抽樣方法需要必要的樣本群的數目是多少?例:某縣有600個村,各村間農戶收入的方差為20元,抽樣平均415、多階段抽樣兩個階段以上的整群抽樣與簡單隨機抽樣相結合的抽樣方式,叫多階段抽樣。5、多階段抽樣兩個階段以上的整群抽樣與簡單隨機抽樣相結合的抽42(五)抽樣估計的方法1、總體參數的點估計
根據總體指標的結構形式設計樣本指標作為總體參數的估計量,并以樣本指標的實際值直接作為相應總體參數的估計值,即直接以樣本平均數、成數推斷總體的平均數和成數。(五)抽樣估計的方法1、總體參數的點估計432、抽樣估計的置信度表明抽樣指標和總體指標的誤差不超過一定范圍的概率保證程度2、抽樣估計的置信度表明抽樣指標和總體指標的誤差不超過一定范443、總體參數的區間估計對于總體的被估計值(總體參數)X,找出兩個數值x1,x2(x1<x2),使被估計指標X落在區間(x1,x2)內的概率為已知的。(用一個具有一定可靠程度的區間范圍來估計總體參數)3、總體參數的區間估計對于總體的被估計值(總體參數)X,找出45區間估計的兩種方法:(1)根據已知的抽樣誤差范圍(抽樣極限誤差)求概率保證程度(置信度)。并給出相應的概率保證程度區間估計的兩種方法:并給出相應的概率保證程度46耐用時間組中值燈泡數耐用時間組中值燈泡數800~85082535950~1000975103850~9008751271000~1050102542900~9509251851050~110010758耐用時間組中值燈泡數耐用時間組中值燈泡數800~85082547(2)給出置信度,求抽樣極限誤差的可能范圍例:某城市某街道所管轄的10000戶居民中,用單純隨機重復抽樣方法抽取200戶,對某種商品的平均需求量和需求傾向進行調查,調查結果表明,每戶居民對該商品的月平均需求量為500克,標準差為100克,表示一年內不選擇其他替代商品,繼續消費該商品的居民戶為90%,試當置信度為85%或95%時,對總體平均數,總體成數進行區間估計。(2)給出置信度,求抽樣極限誤差的可能范圍例:某城市某街道所48總體參數的區間估計的三要素是:估計值、抽樣誤差范圍、概率保證程度。例1:某工廠生產一種新型燈泡5000只,隨機抽取100只作耐用時間實驗,測試結果平均壽命為4500小時,標準差為300小時,試在95.45%概率保證下,估計該新式燈泡平均壽命區間??傮w參數的區間估計的三要素是:估計值、抽樣誤差范圍、概率保證49例2:某鄉有5000農戶,按隨機原則重復抽取100戶調查,得平均每戶年純收入12000元,標準差2000元,要求:(1)以95%的概率估計全鄉平均每戶年純收入的區間;(2)以同樣概率估計全鄉農戶年純收入總額的區間范圍。例2:某鄉有5000農戶,按隨機原則重復抽取50例3:某學校進行一次英語測驗,為了了解學生的考試情況,隨機抽選部分學生進行調查,所得資料如下:考試成績60以下60-7070-8080-9090-100學生人數102022408試以95.45%的可靠性估計該學校英語考試的平均成績的范圍及該校學生成績在80分以上的學生所占的比重的范圍。例3:某學校進行一次英語測驗,為了了解學生的考試情況,隨機抽51課后作業外貿公司出口一種茶葉,規定每包毛重不低于100克,現用不重復抽樣的方法抽取其中的1%進行檢驗,其結果如下:每包重量(克)包數98~9999~100100~101101~10210
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南師范大學《影視后期特效制作》2023-2024學年第一學期期末試卷
- 海南外國語職業學院《數字邏輯電路及》2023-2024學年第一學期期末試卷
- 昆明理工大學《翻譯》2023-2024學年第一學期期末試卷
- 南京鐵道職業技術學院《高等數學C(一)》2023-2024學年第一學期期末試卷
- 仰恩大學《西方文明簡史》2023-2024學年第一學期期末試卷
- 天津體育職業學院《科學技術與工程倫理》2023-2024學年第一學期期末試卷
- 山西藝術職業學院《中外美術教育史》2023-2024學年第一學期期末試卷
- 2025至2030中國紅棗汁行業項目調研及市場前景預測評估報告
- 蘭州財經大學《臨床醫學遺傳學》2023-2024學年第一學期期末試卷
- 燕山大學《生物醫藥與健康》2023-2024學年第一學期期末試卷
- SJG 75-2020 裝飾工程消耗量定額
- 海岸帶資源開發與評價知到智慧樹章節測試課后答案2024年秋寧波大學
- 滴滴網約車出行品牌-品牌視覺識別手冊【出行打車】【VI設計】
- 2025年貴州貴陽市城市發展投資集團股份有限公司招聘筆試參考題庫附帶答案詳解
- 反應釜設備知識培訓課件
- 《危險房屋鑒定標準JGJ125-2016》
- 汽車制造業廉政風險控制措施
- 2025年甘肅省農墾集團限責任公司招聘428人歷年高頻重點提升(共500題)附帶答案詳解
- 生物制造產業園項目實施規劃與進度安排
- 高校物業管理服務實施方案
- 工程造價咨詢服務投標方案(專家團隊版-)
評論
0/150
提交評論