




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省廣州市華南師大附中數學高三第一學期期末調研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]2.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.3.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.612424.已知傾斜角為的直線與直線垂直,則()A. B. C. D.5.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.6.函數(或)的圖象大致是()A. B. C. D.7.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.8.已知,,若,則實數的值是()A.-1 B.7 C.1 D.1或79.已知平面向量,滿足,,且,則()A.3 B. C. D.510.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.11.設是等差數列的前n項和,且,則()A. B. C.1 D.212.若集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_________.14.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.15.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數字作答).16.已知向量,,若,則實數______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.18.(12分)已知,,為正數,且,證明:(1);(2).19.(12分)已知函數.(1)若函數在上單調遞減,求實數的取值范圍;(2)若,求的最大值.20.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.22.(10分)如圖,三棱柱中,側面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【題目詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【題目點撥】本題考查簡單的非線性規劃.解題關鍵是理解非線性目標函數的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.2、C【解題分析】
根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【題目詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【題目點撥】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.3、C【解題分析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【題目詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【題目點撥】本題考查等差數列的應用,屬基礎題。4、D【解題分析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數基本關系式即可得出結果.【題目詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【題目點撥】本題考查了相互垂直的直線斜率之間的關系,同角三角函數基本關系式,考查計算能力,屬于基礎題.5、A【解題分析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.6、A【解題分析】
確定函數的奇偶性,排除兩個選項,再求時的函數值,再排除一個,得正確選項.【題目詳解】分析知,函數(或)為偶函數,所以圖象關于軸對稱,排除B,C,當時,,排除D,故選:A.【題目點撥】本題考查由函數解析式選擇函數圖象,解題時可通過研究函數的性質,如奇偶性、單調性、對稱性等,研究特殊的函數的值、函數值的正負,以及函數值的變化趨勢,排除錯誤選項,得正確結論.7、B【解題分析】
根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【題目詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【題目點撥】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.8、C【解題分析】
根據平面向量數量積的坐標運算,化簡即可求得的值.【題目詳解】由平面向量數量積的坐標運算,代入化簡可得.∴解得.故選:C.【題目點撥】本題考查了平面向量數量積的坐標運算,屬于基礎題.9、B【解題分析】
先求出,再利用求出,再求.【題目詳解】解:由,所以,,,故選:B【題目點撥】考查向量的數量積及向量模的運算,是基礎題.10、B【解題分析】
,將,代入化簡即可.【題目詳解】.故選:B.【題目點撥】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數乘運算,考查學生的運算能力,是一道中檔題.11、C【解題分析】
利用等差數列的性質化簡已知條件,求得的值.【題目詳解】由于等差數列滿足,所以,,.故選:C【題目點撥】本小題主要考查等差數列的性質,屬于基礎題.12、A【解題分析】
先確定集合中的元素,然后由交集定義求解.【題目詳解】,.故選:A.【題目點撥】本題考查求集合的交集運算,掌握交集定義是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉化為點到準線的距離,利用平面幾何知識計算出直線的斜率.【題目詳解】設是準線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【題目點撥】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉化為該點到準線的距離,用平面幾何方法求解.14、【解題分析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【題目詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【題目點撥】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.15、1296【解題分析】
先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【題目詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【題目點撥】本題主要考查了排列組合的應用,考查了學生應用數學解決實際問題的能力.16、-2【解題分析】
根據向量坐標運算可求得,根據平行關系可構造方程求得結果.【題目詳解】由題意得:,解得:本題正確結果:【題目點撥】本題考查向量的坐標運算,關鍵是能夠利用平行關系構造出方程.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解題分析】
根據,可解得,設為曲線任一點,在矩陣對應的變換作用下得到點,則點在曲線上,根據變換的定義寫出相應的矩陣等式,再用表示出,代入曲線的方程中,即得.【題目詳解】,,即.,解得,.設為曲線任一點,則,又設在矩陣A變換作用得到點,則,即,所以即代入,得,所以曲線的方程為.【題目點撥】本題考查逆矩陣,矩陣與變換等,是基礎題.18、(1)證明見解析;(2)證明見解析.【解題分析】
(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【題目詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【題目點撥】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.19、(1)(2)【解題分析】
(1)根據單調遞減可知導函數恒小于等于,采用參變分離的方法分離出,并將的部分構造成新函數,分析與最值之間的關系;(2)通過對的導函數分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進行化簡,從而確定.【題目詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調遞增,所以,所以.(2)當時,.則,令,則,所以在上單調遞減.由于,,所以存在滿足,即.當時,,;當時,,.所以在上單調遞增,在上單調遞減.所以,因為,所以,所以,所以.【題目點撥】(1)求函數中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當導函數不易求零點時,需要將導函數中某些部分拿出作單獨分析,以便先確定導函數的單調性從而確定導函數的零點所在區間,再分析整個函數的單調性,最后確定出函數的最值.20、(Ⅰ);(Ⅱ)最小值和最大值.【解題分析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區間上的單調性,可知函數在區間上是減函數,在區間上是增函數,由此即可求得函數在閉區間上的最大值和最小值.也可以利用整體思想求函數在閉區間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區間上是減函數,在區間上是增函數,,,∴函數在閉區間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數的周期性和單調性.21、(1)見解析;(2)見解析【解題分析】
(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【題目詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【題目點撥】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.22、(1)見解析(2)【解題分析】
(1)根據菱形性質可知,結合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- iceshelf對混合層分層的影響-洞察闡釋
- 小學五年級上冊安全工作計劃(18篇)
- 車輛掛靠汽車美容養護合作協議范本
- 產業園區場地預租及招商引資合同
- 高科技園區場地無償租賃協議
- 車庫及車位租賃管理服務協議
- 2025電子產品購銷版合同
- 2025員工勞動合同范本
- 2025合同范本企業合作運營協議模板
- 2025年上海市物業服務合同示范文本
- 最新醫療“三基三嚴”知識考試題庫及答案
- 2023年福建省高一數學競賽試題參考答案
- 四川省中小型水利工程建設項目管理制管理辦法(試行)
- 嬰幼兒上呼吸道感染的護理課件
- 一年級英語下冊素材-Unit 1 Lets count!課文翻譯 譯林版(一起)
- 幼兒園大班數學口算練習題可打印
- 功能薄膜材料與技術課件
- 應急救援預案組織機構圖
- 中海地產海之子啟航計劃應屆畢業生接收與培養工作管理辦法
- 廉頗藺相如列傳原文及翻譯x0001
- GSM信令流程詳解
評論
0/150
提交評論