2024學年湖南省益陽市資陽區第六中學數學高三第一學期期末教學質量檢測模擬試題含解析_第1頁
2024學年湖南省益陽市資陽區第六中學數學高三第一學期期末教學質量檢測模擬試題含解析_第2頁
2024學年湖南省益陽市資陽區第六中學數學高三第一學期期末教學質量檢測模擬試題含解析_第3頁
2024學年湖南省益陽市資陽區第六中學數學高三第一學期期末教學質量檢測模擬試題含解析_第4頁
2024學年湖南省益陽市資陽區第六中學數學高三第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年湖南省益陽市資陽區第六中學數學高三第一學期期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]2.已知函數的最小正周期為,且滿足,則要得到函數的圖像,可將函數的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度3.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現有高階等差數列,其前7項分別為1,4,8,14,23,36,54,則該數列的第19項為()(注:)A.1624 B.1024 C.1198 D.15604.已知函數f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數根,則實數k的取值范圍是()A. B.C. D.5.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.6.已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為()A. B. C. D.7.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.8.“十二平均律”是通用的音律體系,明代朱載堉最早用數學方法計算出半音比例,為這個理論的發展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.9.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.10.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立11.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.12.已知為定義在上的偶函數,當時,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為__________(用具體數據作答).14.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.15.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員、面向全社會的優質平臺,現已日益成為老百姓了解國家動態,緊跟時代脈搏的熱門app.該款軟件主要設有“閱讀文章”和“視聽學習”兩個學習板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰答題”四個答題板塊.某人在學習過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學習”兩大學習板塊之間最多間隔一個答題板塊的學習方法有________種.16.設O為坐標原點,,若點B(x,y)滿足,則的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據上述表格中的統計數據填寫下面列聯表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發言,記這人中女生的人數為,求的分布列和數學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63518.(12分)某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數x與燒開一壺水所用時間y的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數x的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立y關于x的回歸方程;(3)若旋轉的弧度數x與單位時間內煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數據,,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.19.(12分)已知是公比為的無窮等比數列,其前項和為,滿足,________.是否存在正整數,使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.20.(12分)已知等比數列中,,是和的等差中項.(1)求數列的通項公式;(2)記,求數列的前項和.21.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區等等.(1)為了解“五·一”勞動節當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內的人數為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數據資料顯示每年勞動節當日客流量(單位:萬人)都大于1.將每年勞動節當日客流量數據分成3個區間整理得表:勞動節當日客流量頻數(年)244以這10年的數據資料記錄的3個區間客流量的頻率作為每年客流量在該區間段發生的概率,且每年勞動節當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯關系如下表:勞動節當日客流量型游船最多使用量123若某艘型游船在勞動節當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節當日被投入卻不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節當日獲得的總利潤,的數學期望越大游船中心在勞動節當日獲得的總利潤越大,問該游船中心在2020年勞動節當日應投入多少艘型游船才能使其當日獲得的總利潤最大?22.(10分)2019年12月以來,湖北省武漢市持續開展流感及相關疾病監測,發現多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數,建立了累計確診人數y與時間變量t的兩個回歸模型,根據1月15日至1月24日的數據(時間變量t的值依次1,2,…,10)建立模型和.(1)根據散點圖判斷,與哪一個適宜作為累計確診人數y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(1)的判斷結果及附表中數據,建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數的真實數據,根據(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數的真實數據19752744451559747111(ⅰ)當1月25日至1月27日這3天的誤差(模型預測數據與真實數據差值的絕對值與真實數據的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數據明顯低于預測數據,則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數據(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數據:其中,.5.539019385764031525154700100150225338507

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【題目詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【題目點撥】本題考查簡單的非線性規劃.解題關鍵是理解非線性目標函數的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.2、C【解題分析】

依題意可得,且是的一條對稱軸,即可求出的值,再根據三角函數的平移規則計算可得;【題目詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【題目點撥】本題考查三角函數的性質以及三角函數的變換規則,屬于基礎題.3、B【解題分析】

根據高階等差數列的定義,求得等差數列的通項公式和前項和,利用累加法求得數列的通項公式,進而求得.【題目詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【題目點撥】本小題主要考查新定義數列的理解和運用,考查累加法求數列的通項公式,考查化歸與轉化的數學思想方法,屬于中檔題.4、D【解題分析】

由已知可將問題轉化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【題目詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【題目點撥】本題主要考查了函數與方程思想及轉化能力,還考查了導數的幾何意義及計算能力、觀察能力,屬于難題.5、A【解題分析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【題目詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【題目點撥】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.6、D【解題分析】

根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【題目詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【題目點撥】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.7、A【解題分析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【題目詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【題目點撥】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.8、D【解題分析】分析:根據等比數列的定義可知每一個單音的頻率成等比數列,利用等比數列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數列的實際應用,解決本題的關鍵是能夠判斷單音成等比數列.等比數列的判斷方法主要有如下兩種:(1)定義法,若()或(),數列是等比數列;(2)等比中項公式法,若數列中,且(),則數列是等比數列.9、C【解題分析】

根據表示圓和直線與圓有公共點,得到,再利用二次函數的性質求解.【題目詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【題目點撥】本題主要考查圓的方程,直線與圓的位置關系以及二次函數的性質,還考查了運算求解的能力,屬于中檔題.10、A【解題分析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.11、D【解題分析】

根據已知條件和等比數列的通項公式,求出關系,即可求解.【題目詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【題目點撥】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.12、D【解題分析】

判斷,利用函數的奇偶性代入計算得到答案.【題目詳解】∵,∴.故選:【題目點撥】本題考查了利用函數的奇偶性求值,意在考查學生對于函數性質的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

利用二項展開式的通項公式可求的系數.【題目詳解】的展開式的通項公式為,令,故,故的系數為.故答案為:.【題目點撥】本題考查二項展開式中指定項的系數,注意利用通項公式來計算,本題屬于容易題.14、【解題分析】

由正弦定理,三角函數恒等變換的應用化簡已知等式,結合范圍可求的值,利用正弦定理可求的值,進而根據余弦定理,基本不等式可求的最大值,進而根據三角形的面積公式即可求解.【題目詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【題目點撥】本題主要考查了正弦定理,三角函數恒等變換的應用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉化思想,屬于中檔題.15、【解題分析】

先分間隔一個與不間隔分類計數,再根據捆綁法求排列數,最后求和得結果.【題目詳解】若“閱讀文章”與“視聽學習”兩大學習板塊相鄰,則學習方法有種;若“閱讀文章”與“視聽學習”兩大學習板塊之間間隔一個答題板塊的學習方法有種;因此共有種.故答案為:【題目點撥】本題考查排列組合實際問題,考查基本分析求解能力,屬基礎題.16、【解題分析】,可行域如圖,直線與圓相切時取最大值,由三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解題分析】

(1)根據所給數據可完成列聯表.由總人數及女生人數得男生人數,由表格得達標人數,從而得男生中達標人數,這樣不達標人數隨之而得,然后計算可得結論;(2)由達標人數中男女生人數比為可得抽取的人數,總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望.【題目詳解】(1)列出列聯表,,所以在犯錯誤的概率不超過的前提下能判斷“課外體育達標”與性別有關.(2)(i)在“鍛煉達標”的學生中,男女生人數比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會交流的人中,隨機選出人發言,人中女生的人數為,則的可能值為,,,則,,,可得的分布列為:可得數學期望.【題目點撥】本題考查列聯表與獨立性檢驗,考查分層抽樣,隨機變量的概率分布列和期望.主要考查學生的數據處理能力,運算求解能力,屬于中檔題.18、(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解題分析】

(1)根據散點圖是否按直線型分布作答;(2)根據回歸系數公式得出y關于的線性回歸方程,再得出y關于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【題目詳解】(1)更適宜作燒水時間y關于開關旋鈕旋轉的弧度數x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設,則煤氣用量,當且僅當時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.【題目點撥】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.19、見解析【解題分析】

選擇①或②或③,求出的值,然后利用等比數列的求和公式可得出關于的不等式,判斷不等式是否存在符合條件的正整數解,在有解的情況下,解出不等式,進而可得出結論.【題目詳解】選擇①:因為,所以,所以.令,即,,所以使得的正整數的最小值為;選擇②:因為,所以,.因為,所以不存在滿足條件的正整數;選擇③:因為,所以,所以.令,即,整理得.當為偶數時,原不等式無解;當為奇數時,原不等式等價于,所以使得的正整數的最小值為.【題目點撥】本題考查了等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于中檔題.20、(1)(2)【解題分析】

(1)用等比數列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數列的通項公式即可求得結果;(2)把(1)中求得的結果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【題目詳解】(1)設數列的公比為,由題意知:,∴,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論