【2017年整理】鋼結構常識(入門必看)_第1頁
【2017年整理】鋼結構常識(入門必看)_第2頁
【2017年整理】鋼結構常識(入門必看)_第3頁
【2017年整理】鋼結構常識(入門必看)_第4頁
【2017年整理】鋼結構常識(入門必看)_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

鋼結構加工制作流程

(1)鋼材力學指標:結構用鋼的力學指標包括屈服點、抗拉強度、延伸率、低溫沖擊韌性。這些指標應

符合《鋼結構設計規范》的要求,但其中低溫沖擊韌性僅在結構可能處于低溫環境下工作時才要檢驗。鋼

材力學指標的測定須符合《鋼材力學及工藝性能試驗取樣規定》(GB2975-82)

(2)鋼材化學成分:與鋼材的可加工性、韌性、耐久性等有關。其中主要是碳的含量,合金元素的含量

及硫、磷等雜質元素的限制含量應符合規范(GB222-84)要求。

(3)工藝性能:工藝性能主要包括可焊性和加工性能。可焊性與含碳量或碳當量(低合金鋼)有關,可

用可焊性試驗鑒定。加工性能則通過冷彎試驗來確定。按(GB232-88)為標準。

(4)幾何尺寸偏差:鋼材(鋼板、型鋼、圓鋼、鋼管)的外形尺寸與理論尺寸的偏差必須在允許范圍內

。允許偏差值可參考國家標準GB709-88、GB706-88、GB787-88、GB978-88,GB707-88、GB816-87等。

(5)鋼材外形缺陷:鋼材表面不得有氣泡、結疤、拉裂、裂紋、褶皺、夾雜和壓入的氧化鐵皮。這些缺

陷必須清除,清除后該處的凹陷深度不得大于鋼材厚度負偏差值。另外,當鋼材表面有銹蝕、麻點或劃痕

等缺陷時,其深度不得大于該鋼材厚度負偏差值的1/2。

(6)機械切割:使用機械力(剪切、鋸割、磨削)切割,相應的機械有剪板機、鋸床、砂輪機等,較適

合于厚度在12~16mm以下鋼板或型材的直線性切割。

(7)氣割:使用氧-乙炔、丙烷、液化石油氣等火焰加熱融化金屬,并用壓縮空氣吹去融蝕的金屬液,

從而使金屬割離,適合于曲線切割和多頭切割。)

(8)等離子切割:利用等離子弧線流實現切割,適用于不銹鋼等高熔點材料的切割。

(9)熱成形加工:是指將鋼材加熱到一定溫度后再進行加工。這種方法適于成形、彎曲和矯正在常溫下

不能做的工件。熱加工終止溫度不得低于700℃。加熱溫度在200~300℃時鋼材產生藍脆,嚴禁錘打和彎

曲。含碳量超出低碳鋼范圍的鋼材一般不能進行熱加工。

(10)冷成形加工:是在常溫下進行的。由于外力超出材料的屈服強度而使材料產生要求的永久變形,或

由于外力超出了材料的極限強度而使材料的某些部分按要求與材料脫離。冷加工都有使材料變硬變脆的趨

勢,因而可通過熱處理使鋼材恢復正常狀態或刨削掉硬化較嚴重的邊緣部分。環境溫度低于-16℃時不得

冷加工碳素鋼。低于-12℃時,不得加工低合金鋼。

(11)彎曲加工:根據設計要求,利用加工設備和一定的工裝模具把板材或型鋼彎制成一定形狀的工藝方

法。冷彎適合于薄板、小型鋼;熱彎適合于較厚的板及較復雜的構件、型鋼,熱彎溫度在950~1100℃。

(12)卷板加工:在外力作用下使平鋼板的外層纖維伸長,內層纖維縮短而產生彎曲變形的方法。卷板由

卷板機完成。根據材料溫度的不同,又分為冷卷和熱卷。卷板主要用于焊接圓管柱、管道、氣包等。

(13)折邊:把鋼結構構件的邊緣壓彎成一定角度或一定形狀的工藝過程稱為折邊。折邊一般用于薄板構

件。折邊常用折邊機,配合適當的模具進行。

(14)模壓:模壓是在壓力設備上利用模具使鋼材成型的一種方法。具體作法有落料成形、沖切成形、壓

彎、卷圓、拉伸、壓延等。

(15)鏟邊:鏟邊是通過對鏟頭的錘擊作用而鏟除金屬的邊緣多余部分而形成坡口。鏟邊有手工和風動

之分,風動用風鏟。鏟邊的精度較低,一般用于要求不高、少量坡口的加工。

(16)刨邊:刨邊時工件被壓緊,刨刀沿所加工邊緣作往復運動,刨出坡口。刨邊可刨直邊或斜邊。

(17)銑邊:銑邊與刨邊類似,只是刨邊機走刀箱的刀架和刨刀用盤形銑刀代替,即銑刀在沿邊緣作直

線運動的同時還作旋轉運動,加工工效較高。

(18)碳弧氣刨:將碳棒作電極,與被刨削的金屬間產生電弧將金屬加熱到融化狀態,然后用壓縮空氣

把融化的金屬吹掉。工效較高。

(19)地樣法:在裝配平臺上按1:1放構件實樣,然后根據零件在實樣上的位置,分別組裝起來成為構

件。

(20)仿型復制法:先用地樣法組裝成單面結構,并加定位焊,然后翻身作為復制胎膜,在其上面裝配

另一單面結構。適用于橫斷面互為對稱的桁架結構。

(21)立裝:根據構件的特點及其零件的穩定位置,選擇自上而下或自下而上的裝配,適于放置平穩、

高度不大的結構。

(22)臥裝:構件放置平臥位置裝配。用于斷面不大但長度較大的細長構件。

(23)胎膜裝配法:把構件的零件用胎膜定位在其裝配位置上組裝。用于制造構件批量大精度高的產品

(24)電弧焊:利用焊條與工件間產生的電弧熱將金屬熔合的過程稱為電弧焊。電弧焊有手工焊、自動

焊、半自動焊和氣體保護焊之分。

(25)電阻焊:以電流通過接觸的兩個焊件,在接觸處電阻最大,電流通過產生高溫,使材料呈半熔化

狀態,在加壓力而熔合起來。一般用于對焊圓鋼或點焊鋼板。

(26)電渣焊:借電流通過熔渣所產生的電阻熱來熔化金屬進行焊接。如用于箱形柱與梁剛接時柱內連

接梁上下翼緣處加勁板的熔透焊。

(27)手工焊:全部用人工操作的電弧焊,工效低,質量靠自己,穩定性差,但靈活,適于較短而復雜

的焊縫或工地焊。

(28)埋弧自動焊:焊接時電弧埋在粉狀焊劑下面,由機械自動撒焊劑并送出移動焊絲。適用于較長焊

縫。焊縫質量好,效率高。

(29)氣體保護焊:用CO2或氬氣等保護電弧焊熔化的金屬,其焊絲和氣體的送出均為自動,僅需手工移

動焊槍。屬半自動焊,焊接質量好,效率高。

(30)拋丸:拋丸將粒徑為0.8~2.0mm的鋼丸經拋射機葉輪中心吸入,在葉輪尖定向高速拋出,射向需要

作防銹處理的鋼結構表面,達到機械除銹的目的.這種方法除銹效率高,費用低,污染少。

鋼結構的防腐蝕措施

(1)耐候鋼:耐腐蝕性能優于一般結構用鋼的鋼材稱為耐候鋼,一般含有磷、銅、鎳、鉻、鈦等金屬,

使金屬表面形成保護層,以提高耐腐蝕性。其低溫沖擊韌性也比一般的結構用鋼好。標準為《焊接結構用

耐候鋼》(GB4172-84)。

(2)熱浸鋅:熱浸鋅是將除銹后的鋼構件浸入600℃左右高溫融化的鋅液中,使鋼構件表面附著鋅層,

鋅層厚度對5mm以下薄板不得小于65μm,對厚板不小于86μm。從而起到防腐蝕的目的。這種方法的優點

是耐久年限長,生產工業化程度高,質量穩定。因而被大量用于受大氣腐蝕較嚴重且不易維修的室外鋼結

構中。如大量輸電塔、通訊塔等。近年來大量出現的輕鋼結構體系中的壓型鋼板等。也較多采用熱浸鋅防

腐蝕。熱浸鋅的首道工序是酸洗除銹,然后是清洗。這兩道工序不徹底均會給防腐蝕留下隱患。所以必須

處理徹底。對于鋼結構設計者,應該避免設計出具有相貼合面的構件,以免貼合面的縫隙中酸洗不徹底或

酸液洗不凈。造成鍍鋅表面流黃水的現象。熱浸鋅是在高溫下進行的。對于管形構件應該讓其兩端開敞。

若兩端封閉會造成管內空氣膨脹而使封頭板爆裂,從而造成安全事故。若一端封閉則鋅液流通不暢,易在

管內積存。

(3)熱噴鋁(鋅)復合涂層:這是一種與熱浸鋅防腐蝕效果相當的長效防腐蝕方法。具體做法是先對鋼

構件表面作噴砂除銹,使其表面露出金屬光澤并打毛。再用乙炔-氧焰將不斷送出的鋁(鋅)絲融化,并

用壓縮空氣吹附到鋼構件表面,以形成蜂窩狀的鋁(鋅)噴涂層(厚度約80μm~100μm)。最后用環氧樹

脂或氯丁橡膠漆等涂料填充毛細孔,以形成復合涂層。此法無法在管狀構件的內壁施工,因而管狀構件兩

端必須做氣密性封閉,以使內壁不會腐蝕。這種工藝的優點是對構件尺寸適應性強,構件形狀尺寸幾乎不

受限制。大到如葛洲壩的船閘也是用這種方法施工的。另一個優點則是這種工藝的熱影響是局部的,受約

束的,因而不會產生熱變形。與熱浸鋅相比,這種方法的工業化程度較低,噴砂噴鋁(鋅)的勞動強度大

,質量也易受操作者的情緒變化影響。

(4)涂層法:涂層法防腐蝕性一般不如長效防腐蝕方法(但目前氟碳涂料防腐蝕年限甚至可達50年)。

所以用于室內鋼結構或相對易于維護的室外鋼結構較多。它一次成本低,但用于戶外時維護成本較高。涂

層法的施工的第一步是除銹。優質的涂層依賴于徹底的除銹。所以要求高的涂層一般多用噴砂噴丸除銹,

露出金屬的光澤,除去所有的銹跡和油污。現場施工的涂層可用手工除銹。涂層的選擇要考慮周圍的環境

。不同的涂層對不同的腐蝕條件有不同的耐受性。涂層一般有底漆(層)和面漆(層)之分。底漆含粉料

多,基料少。成膜粗糙,與鋼材粘附力強,與面漆結合性好。面漆則基料多,成膜有光澤,能保護底漆不

受大氣腐蝕,并能抗風化。不同的涂料之間有相容與否的問題,前后選用不同涂料時要注意它們的相容性

。涂層的施工要有適當的溫度(5~38℃之間)和濕度(相對濕度不大于85%)。涂層的施工環境粉塵要少

,構件表面不能有結露。涂裝后4小時之內不得淋雨。涂層一般做4~5遍。干漆膜總厚度室外工程為150μm

,室內工程為125μm,允許偏差為25μm。在海邊或海上或是在有強烈腐蝕性的大氣中,干漆膜總厚度可

加厚為200~220μm。

(5)陰極保護法:在鋼結構表面附加較活潑的金屬取代鋼材的腐蝕。常用于水下或地下結構。

鋼結構的安裝要點

(1)摩擦系數:,其中F為抗滑移試驗所測得的使試件產生初始

滑移的力,nf為摩擦面數,為與F對應的高強螺栓擰緊預拉力實測

值之和。

(2)扭矩系數:,其中d為高強螺栓公稱直徑(mm),M為施加扭矩值(N﹒M),P為螺栓預緊力。10.9

級高強度大六角螺栓連接必須保證扭矩系數K的平均值為0.110~0.150。其標準偏差應小于等于0.010。

(3)初擰扭矩:為了縮小螺栓緊固過程中鋼板變形的影響,可用二次擰緊來減小先后擰緊螺栓之間的相

互影響。高強螺栓第一次擰為初擰,使其軸力宜達到標準軸力的60%~80%。

(4)終擰扭矩:高強螺栓最后緊固用的扭矩為終擰扭矩。考慮各種預應力的損失,終擰扭矩一般比按設

計預拉力作理論計算的扭矩值大5%~10%。

【漆前表面處理相關知識】

工件在加工、運輸、存放等過程中,表面往往帶有氧化皮、鐵銹制模殘留的型砂、焊渣、塵土以及油

和其他污物。要使深層能牢固地附著在工件的表面上,在涂裝前就必須對工件表面進行清理,否則,不僅

影響涂層與基體金屬的結合力和抗腐蝕性能,而且還會使基體金屬在即使有涂層防護下也能繼續腐蝕,使

涂層剝落,影響工件的機械性能和使用壽命。因此工件涂漆前的表面處理是獲得質量優良的防護層,延長

產品使用壽命的重要保證和措施。

為提供良好的工件表面,涂漆前對工件表面的處理有以下幾點:

1.無油污及水分

2.無銹跡及氧化物

3.無粘附性雜質

4.無酸堿等殘留物

5.工件表面有一定的粗糙度

常用的表面處理方法有::::

手工處理:如刮刀、鋼絲刷或砂輪等。用手工可以除去工件表面的銹跡和氧化皮,但手工處理勞動強度大

,生產效率低,質量差,清理不徹底。

化學處理:主要是利用酸性或堿性溶液與工件表面的氧化物及油污發生化學反應,使其溶解在酸性或堿性

的溶液中,以達到去除工件表面銹跡氧化皮及油污的目的。化學處理適應于對薄板件清理,但缺點是:若

時間控制不當,即使加緩蝕劑,也能使鋼材產生過蝕現象。對于較復雜的結構件和有孔的零件,經酸性溶

液酸洗后,浸入縫隙或孔穴中的余酸難以徹底清除,若處理不當,將成為工件以后腐蝕的隱患,且化學物

易揮發,成本高,處理后的化學排放工作難度大,若處理不當,將對環境造成嚴重的污染。隨著人們環保

意識的提高,此種處理方法正被機械處理法取代。

機械處理法:主要包括拋丸法和噴丸法。拋丸法清理是利用離心力將彈丸加速,拋射至工件進行除銹清理

的方法。但拋丸靈活性差,受場地限制,清理工件時有些盲目性,在工件內表面易產生清理不到的死角。

設備結構復雜,易損件多,特別是葉片等零件磨損快,維修工時多,費用高,一次性投入大。

噴丸又分為噴丸和噴砂。用噴丸進行表面處理,打擊力大,清理效果明顯。但噴丸對薄板工件的處理

,容易使工件變形,且鋼丸打擊到工件表面(無論拋丸或噴丸)使金屬基材產生變形,由于Fe3o4和Fe2o3

沒有塑性,破碎后剝離,而油膜與基材一同變形,所以對帶有油污的工件,拋丸、噴丸無法徹底清除油污

。在現有的工件表面處理方法中,清理效果最佳的還數噴砂清理。噴砂適用于工件表面要求較高的清理。

但是我國目前通用噴砂設備中多由鉸龍、刮板、斗式提升機等原始笨重輸砂機械組成。用戶需要施建一個

深地坑及做防水層來裝置機械,建設費用高,維修工作量及維修費用極大,噴砂過程中產生大量的矽塵無

法清除,嚴重影響操作工人的健康并污染環境。

鋼結構檢測基礎知識

鋼結構中所用的構件一般是由鋼廠批量生產,并需有合格證明,因此材料的強度及化學成分是有良好保證的。工程檢測的重點在于安裝、拼接過程中產生的質量問題。鋼結構工程中主要的檢測內容有:

(1)構件尺寸及平整度的檢測;

(2)構件表面缺陷的檢測;

(3)連接(焊接、螺栓連接)的檢測;

(4)鋼材銹蝕檢測;

(5)防火涂層厚度檢測。

如果鋼材無出廠合格證明,或對其質量有懷疑,則應增加鋼材的力學性能試驗,必要時再檢測其化學成分。

二、鋼結構各檢測規范的應用范圍

三、構件尺寸及平整度的檢測

每個尺寸在構件的3個部位量測,取3處的平均值作為該尺寸的代表值。鋼構件的尺寸偏差應以設計圖紙規定的尺寸為基準計算尺寸偏差;偏差的允許值應符合其產品標準的要求。

梁和桁架構件的變形有平面內的垂直變形和平面外的側向變形,因此要檢測兩個方向的平直度。柱的變形主要有柱身傾斜與撓曲。

檢查時可先目測,發現有異常情況或疑點時,對梁、桁架可在構件支點間拉緊一根鐵絲或細線,然后測量各點的垂度與偏差;對柱的傾斜可用經緯儀或鉛垂測量。柱撓曲可在構件支點間拉緊一根鐵絲或細線測量。

四、構件表面缺陷的檢測——磁粉探傷

1、磁粉探傷的基本原理

外加磁場對工件(只能是鐵磁性材料)進行磁化,被磁化后的工件上若不存在缺陷,則它各部位的磁特性基本一致,而存在裂紋、氣孔或非金屬物夾渣等缺陷時,由于它們會在工件上造成氣隙或不導磁的間隙,使缺陷部位的磁阻大大增加,工件內磁力線的正常傳播遭到阻隔,根據磁連續性原理,這時磁化場的磁力線就被迫改變路徑而逸出工件,并在工件表面形成漏磁場。

漏磁場的強度主要取決磁化場的強度和缺陷對于磁化場垂直截面的影響程度。利用磁粉就可以將漏磁場給予顯示或測量出來,從而分析判斷出缺陷的存在與否及其位置和大小。

將鐵磁性材料的粉未撒在工件上,在有漏磁場的位置磁粉就被吸附,從而形成顯示缺陷形狀的磁痕,能比較直觀地檢出缺陷。這種方法是應用最早、最廣的一種無損檢測方法。

磁粉一般用工業純鐵或氧化鐵制作,通常用四氧化三鐵(Fe3O4)制成細微顆粒的粉末作為磁粉。磁粉可分為熒光磁粉和非熒光磁粉兩大類,熒光磁粉是在普通磁粉的顆粒外表面涂上了一層熒光物質,使它在紫外線的照射下能發出熒光,主要的作用是提高了對比度,便于觀察。

磁粉檢測又分干法和濕法兩種:

干法—將磁粉直接撒在被測工件表面。為便于磁粉顆粒向漏磁場滾動,通常干法檢測所用的磁粉顆粒較大,所以檢測靈敏度較低。但是在被測工件不允許采用濕法與水或油接觸時,如溫度較高的試件,則只能采用干濕法。

濕法—將磁粉懸浮于載液(水或煤油等)之中形成磁懸液噴撒于被測工件表面,這時磁粉借助液體流動性較好的特點,能夠比較容易地向微弱的漏磁場移動,同時由于濕法流動性好就可以采用比干法更加細的磁粉,使磁粉更易于被微小的漏磁場所吸附,因此濕法比干法的檢測靈敏度高。

2、磁粉探傷的一般程序

(預處理-磁化-施加磁粉-觀察記錄)

1.預處理

將構件表面的油脂、涂料以及鐵銹等去掉,以免影響磁粉附著在缺陷上。

2.磁化

選用適當的磁化方法和磁化電流,接通電源,對構件進行磁化。

3.施加磁粉

按所選的干法或濕法施加干粉或磁懸液。

4.觀察記錄

用非熒光磁粉擦傷時,在光線明亮的地方,用自然光或燈光進行觀察;用熒光磁粉擦傷時,則在暗室等暗處用紫外燈進行觀察。

連接(焊接、螺栓連接)的檢測

鋼結構的許多質量事故出在連接上,故應將連接作為重點對象進行檢查。

連接板的檢查包括:1)檢測連接板尺寸(尤其是厚度)是否符合要求;2)用直尺作為靠尺檢查其平整度;3)測量因螺栓孔等造成的實際尺寸的減小;4)檢測有無裂縫、局部缺損等損傷。

對于螺栓連接,可用目測、錘敲相結合的方法檢查。并用扭力扳手(當扳手達到一定的力矩時,帶有聲、光指示的扳手)對螺栓的緊固性進行復查,尤其對高強螺栓的連結更應仔細檢查。此外,對螺栓的直徑、個數、排列方式也要一一檢查。

焊接連接目前應用最廣,出事故也較多,應檢查其缺陷。焊縫的缺陷種類不少,如圖所示,有裂紋、氣孔、夾渣、未熔透、虛焊、咬邊、弧坑等。

檢查焊縫缺陷時,可用超聲探傷儀或射線探測儀檢測。在對焊縫的內部缺陷進行探傷前應先進行外觀質量檢查。

焊縫表面質量的檢驗可目測或用10倍放大鏡,當存在疑義時,采用磁粉或滲透擦傷。如果焊縫外觀質量不滿足規定要求,需進行修補。

焊縫的外形尺寸一般用焊縫檢驗尺測量。焊縫檢驗尺由主尺、多用尺和高度標尺構成,可用于測量焊接母材的坡口角度、間隙、錯位、焊縫高度、焊縫寬度和角焊縫高度。

六、鋼材銹蝕的檢測

鋼結構在潮濕、存水和酸堿鹽腐蝕性環境中容易生銹,銹蝕導致鋼材截面削弱,承載力下降。鋼材的銹蝕程度可由其截面厚度的變化來反應。檢測鋼材厚度(必須先除銹))的儀器有超聲波測厚儀(聲速設定、耦合劑)和游標卡尺。

超聲波測厚儀采用脈沖反射波法。超聲波從一種均勻介質向另一種介質傳播時,在界面會發生反射,測厚儀可測出探頭自發出超聲波至收到界面反射回波的時間。超聲波在各種鋼材中的傳播速度已知,或通過實測確定,由波速和傳播時間測算出鋼材的厚度,對于數字超聲波測厚儀,厚度值會直接顯示在顯示屏上。

七、防火涂層厚度的檢測

鋼結構在高溫條件下,材料強度顯著降低。譬如2001年9月11日受恐怖襲擊的美國紐約世貿中心就是典型的例子,世貿大廈采用筒中筒結構,為姊妹塔樓,地下6層,地上110層,高411m,標準層平面尺寸63.5m×63.5m,總面積125萬平方米,整個大樓可容納5萬人辦公,相當于5個深圳地王大廈。外筒為鋼柱,建于1973年,每幢樓用鋼量7800t。兩座大樓受飛機撞擊之后,一個在一小時倒塌,另一個在一小時四十倒塌。

防火涂層的質量要求

薄型防火涂層表面裂紋寬度不應大小0.5mm,涂層厚度應符合有關耐火極限的設計要求;厚型防火涂層表面裂紋寬度不應大小1mm,其涂層厚度應有80%以上的面積符合耐火極限的設計要求,且最薄處厚度不應低于設計要求的85%。防火涂料涂層厚度測定用測針(厚度測量儀)測定。

全鋼框架結構的梁和柱的防火層厚度測定,在構件長度內每隔3m取一截面,對于梁和柱在所選擇的位置中,分別測出6個和8個點。分別計算出它們的平均值,精確到0.5mm。

連接(焊接、螺栓連接)的檢測

鋼結構的許多質量事故出在連接上,故應將連接作為重點對象進行檢查。

連接板的檢查包括:1)檢測連接板尺寸(尤其是厚度)是否符合要求;2)用直尺作為靠尺檢查其平整度;3)測量因螺栓孔等造成的實際尺寸的減小;4)檢測有無裂縫、局部缺損等損傷。

對于螺栓連接,可用目測、錘敲相結合的方法檢查。并用扭力扳手(當扳手達到一定的力矩時,帶有聲、光指示的扳手)對螺栓的緊固性進行復查,尤其對高強螺栓的連結更應仔細檢查。此外,對螺栓的直徑、個數、排列方式也要一一檢查。

焊接連接目前應用最廣,出事故也較多,應檢查其缺陷。焊縫的缺陷種類不少,如圖所示,有裂紋、氣孔、夾渣、未熔透、虛焊、咬邊、弧坑等。

檢查焊縫缺陷時,可用超聲探傷儀或射線探測儀檢測。在對焊縫的內部缺陷進行探傷前應先進行外觀質量檢查。

焊縫表面質量的檢驗可目測或用10倍放大鏡,當存在疑義時,采用磁粉或滲透擦傷。如果焊縫外觀質量不滿足規定要求,需進行修補。

焊縫的外形尺寸一般用焊縫檢驗尺測量。焊縫檢驗尺由主尺、多用尺和高度標尺構成,可用于測量焊接母材的坡口角度、間隙、錯位、焊縫高度、焊縫寬度和角焊縫高度。

六、鋼材銹蝕的檢測

鋼結構在潮濕、存水和酸堿鹽腐蝕性環境中容易生銹,銹蝕導致鋼材截面削弱,承載力下降。鋼材的銹蝕程度可由其截面厚度的變化來反應。檢測鋼材厚度(必須先除銹))的儀器有超聲波測厚儀(聲速設定、耦合劑)和游標卡尺。

超聲波測厚儀采用脈沖反射波法。超聲波從一種均勻介質向另一種介質傳播時,在界面會發生反射,測厚儀可測出探頭自發出超聲波至收到界面反射回波的時間。超聲波在各種鋼材中的傳播速度已知,或通過實測確定,由波速和傳播時間測算出鋼材的厚度,對于數字超聲波測厚儀,厚度值會直接顯示在顯示屏上。

七、防火涂層厚度的檢測

鋼結構在高溫條件下,材料強度顯著降低。譬如2001年9月11日受恐怖襲擊的美國紐約世貿中心就是典型的例子,世貿大廈采用筒中筒結構,為姊妹塔樓,地下6層,地上110層,高411m,標準層平面尺寸63.5m×63.5m,總面積125萬平方米,整個大樓可容納5萬人辦公,相當于5個深圳地王大廈。外筒為鋼柱,建于1973年,每幢樓用鋼量7800t。兩座大樓受飛機撞擊之后,一個在一小時倒塌,另一個在一小時四十倒塌。

防火涂層的質量要求

薄型防火涂層表面裂紋寬度不應大小0.5mm,涂層厚度應符合有關耐火極限的設計要求;厚型防火涂層表面裂紋寬度不應大小1mm,其涂層厚度應有80%以上的面積符合耐火極限的設計要求,且最薄處厚度不應低于設計要求的85%。防火涂料涂層厚度測定用測針(厚度測量儀)測定。

全鋼框架結構的梁和柱的防火層厚度測定,在構件長度內每隔3m取一截面,對于梁和柱在所選擇的位置中,分別測出6個和8個點。分別計算出它們的平均值,精確到0.5mm。電廠分散控制系統故障分析與處理作者:單位:

摘要:歸納、分析了電廠DCS系統出現的故障原因,對故障處理的過程及注意事項進行了說明。為提高分散控制系統可靠性,從管理角度提出了一些預防措施建議,供參考。

關鍵詞:DCS故障統計分析預防措施

隨著機組增多、容量增加和老機組自動化化改造的完成,分散控制系統以其系統和網絡結構的先進性、控制軟件功能的靈活性、人機接口系統的直觀性、工程設計和維護的方便性以及通訊系統的開放性等特點,在電力生產過程中得到了廣泛應用,其功能在DAS、MCS、BMS、SCS、DEH系統成功應用的基礎上,正逐步向MEH、BPC、ETS和ECS方向擴展。但與此同時,分散控制系統對機組安全經濟運行的影響也在逐漸增加;因此如何提高分散控制系統的可靠性和故障后迅速判斷原因的能力,對機組的安全經濟運行至關重要。本文通過對浙江電網機組分散控制系統運行中發生的幾個比較典型故障案例的分析處理,歸納出提高分散系統的可靠性的幾點建議,供同行參考。

1考核故障統計

浙江省電力行業所屬機組,目前在線運行的分散控制系統,有TELEPERM-ME、MOD300,INFI-90,NETWORK-6000,MACSⅠ和MACS-Ⅱ,XDPS-400,A/I。DEH有TOSAMAP-GS/C800,DEH-IIIA等系統。筆者根據各電廠安全簡報記載,將近幾年因分散控制系統異常而引起的機組故障次數及定性統計于表1

表1熱工考核故障定性統計

2熱工考核故障原因分析與處理

根據表1統計,結合筆者參加現場事故原因分析查找過程了解到的情況,下面將分散控制系統異常(浙江省電力行業范圍內)而引起上述機組設備二類及以上故障中的典型案例分類淺析如下:

2.1測量模件故障典型案例分析

測量模件“異常”引起的機組跳爐、跳機故障占故障比例較高,但相對來講故障原因的分析查找和處理比較容易,根據故障現象、故障首出信號和SOE記錄,通過分析判斷和試驗,通常能較快的查出“異常”模件。這種“異常”模件有硬性故障和軟性故障二種,硬性故障只能通過更換有問題模件,才能恢復該系統正常運行;而軟性故障通過對模件復位或初始化,系統一般能恢復正常。比較典型的案例有三種:

(1)未冗余配置的輸入/輸出信號模件異常引起機組故障。如有臺130MW機組正常運行中突然跳機,故障首出信號為“軸向位移大Ⅱ”,經現場檢查,跳機前后有關參數均無異常,軸向位移實際運行中未達到報警值保護動作值,本特利裝置也未發訊,但LPC模件卻有報警且發出了跳機指令。因此分析判斷跳機原因為DEH主保護中的LPC模件故障引起,更換LPC模件后沒有再發生類似故障。另一臺600MW機組,運行中汽機備用盤上“汽機軸承振動高”、“汽機跳閘”報警,同時汽機高、中壓主汽門和調門關閉,發電機逆功率保護動作跳閘;隨即高低壓旁路快開,磨煤機B跳閘,鍋爐因“汽包水位低低”MFT。經查原因系#1高壓調門因閥位變送器和控制模件異常,使調門出現大幅度晃動直至故障全關,過程中引起#1軸承振動高高保護動作跳機。更換#1高壓調門閥位控制卡和閥位變送器后,機組啟動并網,恢復正常運行。

(2)冗余輸入信號未分模件配置,當模件故障時引起機組跳閘:如有一臺600MW機組運行中汽機跳閘,隨即高低壓旁路快開,磨煤機B和D相繼跳閘,鍋爐因“爐膛壓力低低”MFT。當時因系統負荷緊張,根據SOE及DEH內部故障記錄,初步判斷的跳閘原因而強制汽機應力保護后恢復機組運行。二日后機組再次跳閘,全面查找分析后,確認2次機組跳閘原因均系DEH系統三路“安全油壓力低”信號共用一模件,當該模件異常時導致汽輪機跳閘,更換故障模件后機組并網恢復運行。另一臺200MW機組運行中,汽包水位高Ⅰ值,Ⅱ值相繼報警后MFT保護動作停爐。查看CRT上汽包水位,2點顯示300MM,另1點與電接點水位計顯示都正常。進一步檢查顯示300MM的2點汽包水位信號共用的模件故障,更換模件后系統恢復正常。針對此類故障,事后熱工所采取的主要反事故措施,是在檢修中有針對性地對冗余的輸入信號的布置進行檢查,盡可能地進行分模件處理。

(3)一塊I/O模件損壞,引起其它I/O模件及對應的主模件故障:如有臺機組“CCS控制模件故障"及“一次風壓高低”報警的同時,CRT上所有磨煤機出口溫度、電流、給煤機煤量反饋顯示和總煤量百分比、氧量反饋,燃料主控BTU輸出消失,F磨跳閘(首出信號為“一次風量低”)。4分鐘后CRT上磨煤機其它相關參數也失去且狀態變白色,運行人員手動MFT(當時負荷410MW)。經檢查電子室制粉系統過程控制站(PCU01柜MOD4)的電源電壓及處理模件底板正常,二塊MFP模件死機且相關的一塊CSI模件((模位1-5-3,有關F磨CCS參數)故障報警,拔出檢查發現其5VDC邏輯電源輸入回路、第4輸出通道、連接MFP的I/O擴展總線電路有元件燒壞(由于輸出通道至BCS(24VDC),因此不存在外電串入損壞元件的可能)。經復位二塊死機的MFP模件,更換故障的CSI模件后系統恢復正常。根據軟報警記錄和檢查分析,故障原因是CSI模件先故障,在該模件故障過程中引起電壓波動或I/O擴展總線故障,導致其它I/O模件無法與主模件MFP03通訊而故障,信號保持原值,最終導致主模件MFP03故障(所帶A-F磨煤機CCS參數),CRT上相關的監視參數全部失去且呈白色。

2.2主控制器故障案例分析

由于重要系統的主控制器冗余配置,大大減少了主控制器“異常”引發機組跳閘的次數。主控制器“異常”多數為軟故障,通過復位或初始化能恢復其正常工作,但也有少數引起機組跳閘,多發生在雙機切換不成功時,如:

(1)有臺機組運行人員發現電接點水位計顯示下降,調整給泵轉速無效,而CRT上汽包水位保持不變。當電接點水位計分別下降至甲-300mm,乙-250mm,并繼續下降且汽包水位低信號未發,MFT未動作情況下,值長令手動停爐停機,此時CRT上調節給水調整門無效,就地關閉調整門;停運給泵無效,汽包水位急劇上升,開啟事故放水門,甲、丙給泵開關室就地分閘,油泵不能投運。故障原因是給水操作站運行DPU死機,備用DPU不能自啟動引起。事后熱工對給泵、引風、送風進行了分站控制,并增設故障軟手操。

(2)有臺機組運行中空預器甲、乙擋板突然關閉,爐膛壓力高MFT動作停爐;經查原因是風煙系統I/O站DPU發生異常,工作機向備份機自動切換不成功引起。事后電廠人員將空預器煙氣擋板甲1、乙1和甲2、乙2兩組控制指令分離,分別接至不同的控制站進行控制,防止類似故障再次發生。

2.3DAS系統異常案例分析

DAS系統是構成自動和保護系統的基礎,但由于受到自身及接地系統的可靠性、現場磁場干擾和安裝調試質量的影響,DAS信號值瞬間較大幅度變化而導致保護系統誤動,甚至機組誤跳閘故障在我省也有多次發生,比較典型的這類故障有:

(1)模擬量信號漂移:為了消除DCS系統抗無線電干擾能力差的缺陷,有的DCS廠家對所有的模擬量輸入通道加裝了隔離器,但由此帶來部分熱電偶和熱電阻通道易電荷積累,引起信號無規律的漂移,當漂移越限時則導致保護系統誤動作。我省曾有三臺機組發生此類情況(二次引起送風機一側馬達線圈溫度信號向上漂移跳閘送風機,聯跳引風機對應側),但往往只要松一下端子板接線(或拆下接線與地碰一下)再重新接上,信號就恢復了正常。開始熱工人員認為是端子柜接地不好或者I/O屏蔽接線不好引起,但處理后問題依舊。廠家多次派專家到現場處理也未能解決問題。后在機組檢修期間對系統的接地進行了徹底改造,拆除原來連接到電纜橋架的AC、DC接地電纜;柜內的所有備用電纜全部通過導線接地;UPS至DCS電源間增加1臺20kVA的隔離變壓器,專門用于系統供電,且隔離變壓器的輸出端N線與接地線相連,接地線直接連接機柜作為系統的接地。同時緊固每個端子的接線;更換部份模件并將模件的軟件版本升級等。使漂移現象基本消除。

(2)DCS故障診斷功能設置不全或未設置。信號線接觸不良、斷線、受干擾,使信號值瞬間變化超過設定值或超量程的情況,現場難以避免,通過DCS模擬量信號變化速率保護功能的正確設置,可以避免或減少這類故障引起的保護系統誤動。但實際應用中往往由于此功能未設置或設置不全,使此類故障屢次發生。如一次風機B跳閘引起機組RB動作,首出信號為軸承溫度高。經查原因是由于測溫熱電阻引線是細的多股線,而信號電纜是較粗的單股線,兩線采用絞接方式,在震動或外力影響下連接處松動引起軸承溫度中有點信號從正常值突變至無窮大引起(事后對連接處進行錫焊處理)。類似的故障有:民工打掃現場時造成送風機軸承溫度熱電阻接線松動引起送風機跳閘;軸承溫度熱電阻本身損壞引起一次風機跳閘;因現場干擾造成推力瓦溫瞬間從99℃突升至117℃,1秒鐘左右回到99℃,由于相鄰第八點已達85℃,滿足推力瓦溫度任一點105℃同時相鄰點達85℃跳機條件而導致機組跳閘等等。預防此類故障的辦法,除機組檢修時緊固電纜和電纜接線,并采用手松拉接線方式確認無接線松動外,是完善DCS的故障診斷功能,對參與保護連鎖的模擬量信號,增加信號變化速率保護功能尤顯重要(一當信號變化速率超過設定值,自動將該信號退出相應保護并報警。當信號低于設定值時,自動或手動恢復該信號的保護連鎖功能)。

(3)DCS故障診斷功能設置錯誤:我省有臺機組因為電氣直流接地,保安1A段工作進線開關因跳閘,引起掛在該段上的汽泵A的工作油泵A連跳,油泵B連鎖啟動過程中由于油壓下降而跳汽泵A,汽泵B升速的同時電泵連鎖啟動成功。但由于運行操作速度過度,電泵出口流量超過量程,超量程保護連鎖開再循環門,使得電泵實際出水小,B泵轉速上升到5760轉時突然下降1000轉左右(事后查明是抽汽逆止閥問題),最終導致汽包水位低低保護動作停爐。此次故障是信號超量程保護設置不合理引起。一般來說,DAS的模擬量信號超量程、變化速率大等保護動作后,應自動撤出相應保護,待信號正常后再自動或手動恢復保護投運。

2.4軟件故障案例分析

分散控制系統軟件原因引起的故障,多數發生在投運不久的新軟件上,運行的老系統發生的概率相對較少,但一當發生,此類故障原因的查找比較困難,需要對控制系統軟件有較全面的了解和掌握,才能通過分析、試驗,判斷可能的故障原因,因此通常都需要廠家人員到現場一起進行。這類故障的典型案例有三種:

(1)軟件不成熟引起系統故障:此類故障多發生在新系統軟件上,如有臺機組80%額定負荷時,除DEH畫面外所有DCS的CRT畫面均死機(包括兩臺服務器),參數顯示為零,無法操作,但投入的自動系統運行正常。當時采取的措施是:運行人員就地監視水位,保持負荷穩定運行,熱工人員趕到現場進行系統重啟等緊急處理,經過30分鐘的處理系統恢復正常運行。故障原因經與廠家人員一起分析后,確認為DCS上層網絡崩潰導致死機,其過程是服務器向操作員站發送數據時網絡阻塞,引起服務器與各操作員站的連接中斷,造成操作員站讀不到數據而不停地超時等待,導致操作員站圖形切換的速度十分緩慢(網絡任務未死)。針對管理網絡數據阻塞情況,廠家修改程序考機測試后進行了更換。另一臺機組曾同時出現4臺主控單元“白燈”現象,現場檢查其中2臺是因為A機備份網停止發送,1臺是A機備份網不能接收,1臺是A機備份網收、發數據變慢(比正常的站慢幾倍)。這類故障的原因是主控工作機的網絡發送出現中斷丟失,導致工作機發往備份機的數據全部丟失,而雙機的診斷是由工作機向備份機發診斷申請,由備份機響應診斷請求,工作機獲得備份機的工作狀態,上報給服務器。由于工作機的發送數據丟失,所以工作機發不出申請,也就收不到備份機的響應數據,認為備份機故障。臨時的解決方法是當長時間沒有正確發送數據后,重新初始化硬件和軟件,使硬件和軟件從一個初始的狀態開始運行,最終通過更新現場控制站網絡診斷程序予以解決。

(2)通信阻塞引發故障:使用TELEPERM-ME系統的有臺機組,負荷300MW時,運行人員發現煤量突減,汽機調門速關且CRT上所有火檢、油槍、燃油系統均無信號顯示。熱工人員檢查發現機組EHF系統一柜內的I/OBUS接口模件ZT報警燈紅閃,操作員站與EHF系統失去偶合,當試著從工作站耦合機進入OS250PC軟件包調用EHF系統時,提示不能訪問該系統。通過查閱DCS手冊以及與SIEMENS專家間的電話分析討論,判斷故障原因最大的可能是在三層CPU切換時,系統處理信息過多造成中央CPU與近程總線之間的通信阻塞引起。根據商量的處理方案于當晚11點多在線處理,分別按三層中央柜的同步模件的SYNC鍵,對三層CPU進行軟件復位:先按CPU1的SYNC鍵,相應的紅燈亮后再按CPU2的SYNC鍵。第二層的同步紅燈亮后再按CPU3的同步模件的SYNC鍵,按3秒后所有的SYNC的同步紅燈都熄滅,系統恢復正常。

(3)軟件安裝或操作不當引起:有兩臺30萬機組均使用ConductorNT5.0作為其操作員站,每套機組配置3個SERVER和3個CLIENT,三個CLIENT分別配置為大屏、值長站和操作員站,機組投運后大屏和操作員站多次死機。經對全部操作員站的SERVER和CLIENT進行全面診斷和多次分析后,發現死機的原因是:1)一臺SERVER因趨勢數據文件錯誤引起它和掛在它上的CLIENT在當調用趨勢畫面時畫面響應特別緩慢(俗稱死機)。在刪除該趨勢數據文件后恢復正常。2)一臺SERVER因文件類型打印設備出錯引起該SERVER的內存全部耗盡,引起它和掛在它上的CLIENT的任何操作均特別緩慢,這可通過任務管理器看到DEV.EXE進程消耗掉大量內存。該問題通過刪除文件類型打印設備和重新組態后恢復正常。3)兩臺大屏和工程師室的CLIENT因聲音程序沒有正確安裝,當有報警時會引起進程CHANGE.EXE調用后不能自動退出,大量的CHANGE.EXE堆積消耗直至耗盡內存,當內存耗盡后,其操作極其緩慢(俗稱死機)。重新安裝聲音程序后恢復正常。此外操作員站在運行中出現的死機現象還有二種:一種是鼠標能正常工作,但控制指令發不出,全部或部分控制畫面不會刷新或無法切換到另外的控制畫面。這種現象往往是由于CRT上控制畫面打開過多,操作過于頻繁引起,處理方法為用鼠標打開VMS系統下拉式菜單,RESET應用程序,10分鐘后系統一般就能恢復正常。另一種是全部控制畫面都不會刷新,鍵盤和鼠標均不能正常工作。這種現象往往是由操作員站的VMS操作系統故障引起。此時關掉OIS電源,檢查各部分連接情況后再重新上電。如果不能正常啟動,則需要重裝VMS操作系統;如果故障診斷為硬件故障,則需更換相應的硬件。

(4)總線通訊故障:有臺機組的DEH系統在準備做安全通道試驗時,發現通道選擇按鈕無法進入,且系統自動從“高級”切到“基本級”運行,熱控人員檢查發現GSE柜內的所有輸入/輸出卡(CSEA/CSEL)的故障燈亮,經復歸GSE柜的REG卡后,CSEA/CSEL的故障燈滅,但系統在重啟“高級”時,維護屏不能進入到正常的操作畫面呈死機狀態。根據報警信息分析,故障原因是系統存在總線通訊故障及節點故障引起。由于阿爾斯通DEH系統無冗余配置,當時無法處理,后在機組調停時,通過對基本級上的REG卡復位,系統恢復了正常。

(5)軟件組態錯誤引起:有臺機組進行#1中壓調門試驗時,強制關閉中間變量IV1RCO信號,引起#1-#4中壓調門關閉,負荷從198MW降到34MW,再熱器壓力從2.04MP升到4.0Mpa,再熱器安全門動作。故障原因是廠家的DEH組態,未按運行方式進行,流量變量本應分別賦給IV1RCO-IV4RCO,實際組態是先賦給IV1RCO,再通過IV1RCO分別賦給IV2RCO-IV4RCO。因此當強制IV1RCO=0時,所有調門都關閉,修改組態文件后故障消除。

2.5電源系統故障案例分析

DCS的電源系統,通常采用1:1冗余方式(一路由機組的大UPS供電,另一路由電廠的保安電源供電),任何一路電源的故障不會影響相應過程控制單元內模件及現場I/O模件的正常工作。但在實際運行中,子系統及過程控制單元柜內電源系統出現的故障仍為數不少,其典型主要有:

(1)電源模件故障:電源模件有電源監視模件、系統電源模件和現場電源模件3種。現場電源模件通常在端子板上配有熔絲作為保護,因此故障率較低。而前二種模件的故障情況相對較多:1)系統電源模件主要提供各不同等級的直流系統電壓和I/O模件電壓。該模件因現場信號瞬間接地導致電源過流而引起損壞的因素較大。因此故障主要檢查和處理相應現場I/O信號的接地問題,更換損壞模件。如有臺機組負荷520MW正常運行時MFT,首出原因“汽機跳閘"。CRT畫面顯示二臺循泵跳閘,備用盤上循泵出口閥<86°信號報警。5分鐘后運行巡檢人員就地告知循泵A、B實際在運行,開關室循泵電流指示大幅晃動且A大于B。進一步檢查機組PLC診斷畫面,發現控制循泵A、B的二路冗余通訊均顯示“出錯”。43分鐘后巡檢人員發現出口閥開度小就地緊急停運循泵A、B。事后查明A、B兩路冗余通訊中斷失去的原因,是為通訊卡提供電源支持的電源模件故障而使該系統失電,中斷了與PLC主機的通訊,導致運行循泵A、B狀態失去,凝汽器保護動作,機組MFT。更換電源模件后通訊恢復正常。事故后熱工制定的主要反事故措施,是將兩臺循泵的電流信號由PLC改至DCS的CRT顯示,消除通信失去時循泵運行狀態無法判斷的缺陷;增加運行泵跳閘關其出口閥硬邏輯(一臺泵運行,一臺泵跳閘且其出口閥開度>30度,延時15秒跳運行泵硬邏輯;一臺泵運行,一臺泵跳閘且其出口閥開度>0度,逆轉速動作延時30秒跳運行泵硬邏輯);修改凝汽器保護實現方式。2)電源監視模件故障引起:電源監視模件插在冗余電源的中間,用于監視整個控制站電源系統的各種狀態,當系統供電電壓低于規定值時,它具有切斷電源的功能,以免損壞模件。另外它還提供報警輸出觸點,用于接入硬報警系統。在實際使用中,電源監視模件因監視機箱溫度的2個熱敏電阻可靠性差和模件與機架之間接觸不良等原因而故障率較高。此外其低電壓切斷電源的功能也會導致機組誤跳閘,如有臺機組滿負荷運行,BTG盤出現“CCS控制模件故障”報警,運行人員發現部分CCS操作框顯示白色,部分參數失去,且對應過程控制站的所有模件顯示白色,6s后機組MFT,首出原因為“引風機跳閘”。約2分鐘后CRT畫面顯示恢復正常。當時檢查系統未發現任何異常(模件無任何故障痕跡,過程控制站的通訊卡切換試驗正常)。機組重新啟動并網運行也未發現任何問題。事后與廠家技術人員一起專題分析討論,并利用其它機組小修機會對控制系統模擬試驗驗證后,認為事件原因是由于該過程控制站的系統供電電壓瞬間低于規定值時,其電源監視模件設置的低電壓保護功能作用切斷了電源,引起控制站的系統電源和24VDC、5VDC或15VDC的瞬間失去,導致該控制站的所有模件停止工作(現象與曾發生過的24VDC接地造成機組停機事件相似),使送、引風機調節機構的控制信號為0,送風機動葉關閉(氣動執行機構),引風機的電動執行機構開度保持不變(保位功能),導致爐膛壓力低,機組MFT。

(2)電源系統連接處接觸不良:此類故障比較典型的有:1)電源系統底板上5VDC電壓通常測量值在5.10~5.20VDC之間,但運行中測量各柜內進模件的電壓很多在5V以下,少數跌至4.76VDC左右,引起部分I/O卡不能正常工作。經查原因是電源底板至電源母線間連接電纜的多芯銅線與線鼻子之間,表面上接觸比較緊,實際上因銅線表面氧化接觸電阻增加,引起電纜溫度升高,壓降增加。在機組檢修中通過對所有5VDC電纜銅線與線鼻子之間的焊錫處理,問題得到解決。2)MACS-ⅠDCS運行中曾在兩個月的運行中發生2M801工作狀態顯示故障而更換了13臺主控單元,但其中的多數離線上電測試時卻能正常啟動到工作狀態,經查原因是原主控5V電源,因線損和插頭耗損而導致電壓偏低;通過更換主控間的冗余電纜為預制電纜;現場主控單元更換為2M801E-D01,提升主控工作電源單元電壓至5.25V后基本恢復正常。3)有臺機組負荷135MW時,給水調門和給水旁路門關小,汽包水位急速下降引發MFT。事后查明原因是給水調門、給水旁路門的端子板件電源插件因接觸不良,指令回路的24V電源時斷時續,導致給水調門及給水旁路門在短時內關下,汽包水位急速下降導致MFT。4)有臺機組停爐前,運行將汽機控制從滑壓切至定壓后,發現DCS上汽機調門仍全開,主汽壓力4260kpa,SIP上顯示汽機壓力下降為1800kpa,汽機主保護未動作,手動拍機。故障原因系汽機系統與DCS、汽機顯示屏通訊卡件BOX1電源接觸點虛焊、接觸不好,引起通訊故障,使DCS與汽機顯示屏重要數據顯示不正常,運行因汽機重要參數失準手動拍機。經對BOX1電源接觸點重新焊接后通訊恢復。5)循泵正常運行中曾發出#2UPS失電報警,20分鐘后對應的#3、#4循泵跳閘。由于運行人員處理及時,未造成嚴重后果。熱工人員對就地進行檢查發現#2UPS輸入電源插頭松動,導致#2UPS失電報警。進行專門試驗結果表明,循泵跳閘原因是UPS輸入電源失去后又恢復的過程中,引起PLC輸入信號抖動誤發跳閘信號。

(3)UPS功能失效:有臺機組呼叫系統的喇叭有雜音,通信班人員關掉該系統的主機電源查原因并處理。重新開啟該主機電源時,呼叫系統雜音消失,但集控室右側CRT畫面顯示全部失去,同時MFT信號發出。經查原因是由于呼叫系統主機電源接至該機組主UPS,通訊人員在帶載合開關后,給該機組主UPS電源造成一定擾動,使其電壓瞬間低于195V,導致DCS各子系統后備UPS啟動,但由于BCS系統、歷史數據庫等子系統的后備UPS失去帶負荷能力(事故后試驗確定),造成這些系統失電,所有制粉系統跳閘,機組由于“失燃料”而MFT。

(4)電源開關質量引起:電源開關故障也曾引起機組多次MFT,如有臺機組的發電機定冷水和給水系統離線,汽泵自行從“自動”跳到“手動”狀態;在MEH上重新投入鍋爐自動后,汽泵無法增加流量。1分鐘后鍋爐因汽包水位低MFT動作。故障原因經查是DCS給水過程控制站二只電源開關均燒毀,造成該站失電,導致給水系統離線,無法正常向汽泵發控制信號,最終鍋爐因汽包水位低MFT動作。

2.6SOE信號準確性問題處理

一旦機組發生MFT或跳機時,運行人員首先憑著SOE信號發生的先后順序來進行設備故障的判斷。因此SOE記錄信號的準確性,對快速分析查找出機組設備故障原因有著很重要的作用。這方面曾碰到過的問題有:

(1)SOE信號失準:由于設計等原因,基建接受過來的機組,SOE信號往往存在著一些問題(如SOE系統的信號分辨力達不到指標要求卻因無測試儀器測試而無法證實,信號源不是直接取自現場,描述與實際不符,有些信號未組態等等),導致SOE信號不能精確反映設備的實際動作情況。有臺機組MFT時,光字牌報警“全爐膛滅火”,檢查DCS中每層的3/4火檢無火條件瞬間成立,但SOE卻未捉捕到“全爐膛滅火”信號。另一臺機組MFT故障,根據運行反映,首次故障信號顯示“全爐膛滅火”,同時有“DCS電源故障”報警,但SOE中卻未記錄到DCS電源故障信號。這使得SOE系統在事故分析中的作用下降,增加了查明事故原因的難度。為此我省各電廠組織對SOE系統進行全面核對、整理和完善,盡量做到SOE信號都取自現場,消除SOE系統存在的問題。同時我們專門開發了SOE信號分辨力測試儀,經浙江省計量測試院測試合格后,對全省所屬機組SOE系統分辨力進行全部測試,掌握了我省DCS的SOE系統分辨力指標不大于1ms的有四家,接近1ms的有二家,4ms的有一家。

(2)SOE報告內容凌亂:某電廠兩臺30萬機組的INFI-90分散控制系統,每次機組跳閘時生成的多份SOE報告內容凌亂,啟動前總是生成不必要的SOE報告。經過1)調整SEM執行塊參數,把觸發事件后最大事件數及觸發事件后時間周期均適當增大。2)調整DSOEPoint清單,把每個通道的SimpleTrigger由原來的BOTH改為0TO1,RecordableEvent。3)重新下裝SEM組態后,問題得到了解決。

(3)SOE報表上出現多個點具有相同的時間標志:對于INFI-90分散控制系統,可能的原因與處理方法是:1)某個SET或SED模件被拔出后在插入或更換,導致該子模件上的所有點被重新掃描并且把所有狀態為1的點(此時這些點均有相同的跳閘時間)上報給SEM。2)某個MFP主模件的SOE緩沖區設置太小產生溢出,這種情況下,MFP將會執行內部處理而復位SOE,導致其下屬的所有SET或SED子模件中,所有狀態為1的點(這些點均有相同跳閘時間)上報給了SEM模件。處理方法是調整緩沖區的大小(其值由FC241的S2決定,一般情況下調整為100)。3)SEM收到某個MFP的事件的時間與事件發生的時間之差大于設定的最大等待時間(由FC243的S5決定),則SEM將會發一個指令讓對應的MFP執行SOE復位,MFP重新掃描其下屬的所有SOE點,且將所有狀態為1的點(這些點均有相同的跳閘時間)上報給SEM,。在環路負荷比較重的情況下(比如兩套機組通過中央環公用一套SEM模件),可適當加大S5值,但最好不要超過60秒。

2.7控制系統接線原因

控制系統接線松動、錯誤而引起機組故障的案例較多,有時此類故障原因很難查明。此類故障雖與控制系統本身質量無關,但直接影響機組的安全運行,如:

(1)接線松動引起:有臺機組負荷125MW,汽包水位自動調節正常,突然給水泵轉速下降,執行機構開度從64%關至5%左右,同時由于給水泵模擬量手站輸出與給水泵液偶執行機構偏差大(大于10%自動跳出)給水自動調節跳至手動,最低轉速至1780rpm,汽包水位低低MFT動作。原因經查是因為給水泵液偶執行機構與DCS的輸出通道信號不匹配,在其之間加裝的信號隔離器,因24VDC供電電源接線松動失電引起。緊固接線后系統恢復正常。事故后對信號隔離器進行了冗余供電。

(2)接線錯誤引起:某#2機組出力300MW時,#2B汽泵跳閘(無跳閘原因首出、無大屏音響報警),機組RB動作,#2E磨聯鎖跳閘,電泵自啟,機組被迫降負荷。由于僅有ETS出口繼電器動作記錄,無#2B小機跳閘首出和事故報警,且故障后的檢查試驗系統都正常,當時原因未查明。后機組檢修復役前再次發生誤動時,全面檢查小機現場緊急跳閘按鈕前接的是電源地線,跳閘按鈕后至PLC,而PLC后的電纜接的是220V電源火線,拆除跳閘按鈕后至PLC的電纜,誤動現象消除,由此查明故障原因是是跳閘按鈕后至PLC的電纜發生接地,引起緊急跳閘系統誤動跳小機。

(3)接頭松動引起:一臺機組備用盤硬報警窗處多次出現“主機EHC油泵2B跳閘”和“開式泵2A跳閘”等信號誤報警,通過CRT畫面檢查發現PLC的A路部分I/O柜通訊時好時壞,進一步檢查發現機側PLC的3A、4、5A和6的4個就地I/O柜二路通訊同時時好時壞,與此同時機組MFT動作,首出原因為汽機跳閘。原因是通訊母線B路在PLC4柜內接頭和PLC5、PLC4柜本身的通訊分支接頭有輕微松動,通過一系列的緊固后通訊恢復正常。

針對接線和接頭松動原因引起的故障,我省在基建安裝調試和機組檢修過程中,通過將手松拉接線以以確認接線是否可靠的方法,列入質量驗收內容,提高了接線質量,減少了因接線質量引起的機組誤動。同時有關電廠制定了熱工控設備通訊電纜隨機組檢修緊固制度,完善控制邏輯,提高了系統的可靠性。

2.8控制系統可靠性與其它專業的關系

需要指出的是MFT和ETS保護誤動作的次數,與有關部門的配合、運行人員對事故的處理能力密切相關,類似的故障有的轉危為安,有的導致機組停機。一些異常工況出現或輔機保護動作,若運行操作得當,本可以避免MFT動作(如有臺機組因為給煤機煤量反饋信號瞬時至零,30秒后邏輯聯鎖磨煤機熱風隔離擋板關閉,引起一次風流量急降和出口風溫持續下跌,熱風調節擋板自動持續開至100%,冷風調節擋板由于前饋回路的作用而持續關小,使得一次風流量持續下降。但由于熱風隔離擋板有卡澀,關到位信號未及時發出,使得一次風流量小至造成磨煤機中的煤粉積蓄,第5分鐘時運行減少了約10%的煤量,約6分鐘后熱風隔離擋板突然關到位,引起一次風流量的再度急劇下降,之后按設計連鎖邏輯,冷風隔離擋板至全開,使得一次風流量迅速增大,并將磨煤機C中的蓄煤噴向爐膛,造成鍋爐燃燒產生局部小爆燃,引風機自動失控于這種異常情況,在三個波的擾動后(約1分鐘),爐膛壓力低低MFT。當時MFT前7分鐘的異常工況運行過程中,只要停運該臺磨煤機就可避免MFT故障的發生)。此外有關部門與熱工良好的配合,可減少或加速一些誤動隱患的消除;因此要減少機組停組次數,除熱工需在提高設備可靠性和自身因素方面努力外,還需要熱工和機務的協調配合和有效工作,達到對熱工自動化設備的全方位管理。需要運行人員做好事故預想,完善相關事故操作指導,提高監盤和事故處理能力。

3提高熱工自動化系統可靠性的建議

隨著熱工系統覆蓋機、電、爐運行的所有參數,監控功能和范圍的不斷擴大以及機組運行特點的改變和DCS技術的廣泛應用,熱控自動化設備已由原先的配角地位轉變為決定機組安全經濟運行的主導因素,其任一環節出現問題,都有導致熱控裝置部分功能失效或引發系統故障,機組跳閘、甚至損壞主設備的可能。因此如何通過科學的基礎管理,確保所監控的參數準確、系統運行可靠是熱工安全生產工作中的首要任務。在收集、總結、吸收同仁們自動化設備運行檢修、管理經驗和保護誤動誤動原因分析的基礎上,結合熱工監督工作實踐,對提高熱工保護系統可靠性提出以下建議,供參考:

3.1完善熱工自動化系統

(1)解決操作員站電源冗余問題:過程控制單元柜的電源系統均冗余配置,但所有操作員站的電源通常都接自本機組的大UPS,不提供冗余配置。如果大UPS電壓波動,將可能引起所有操作員站死機而不得不緊急停運機組,但由于死機后所有信號都失去監視,停機也并非易事。為避免此類問題發生,建議將每臺機組的部份操作員站與另一臺機組的大UPS交叉供電,以保證當本機大UPS電壓波動時,仍有2臺OIS在正常運行。

(2)對硬件的冗余配置情況進行全面核查,重要保護信號盡可能采取三取二方式,消除同參數的多信號處理和互為備用設備的控制回路未分模件、分電纜或分電源(對互為備用的設備)現象,減少一模件故障引起保護系統誤動的隱患。

(3)做好軟報警信號的整理:一臺600MW機組有近萬個軟報警點,這些軟報警點往往未分級處理,存在許多描述錯誤,報警值設置不符設計,導致操作畫面上不斷出現大量誤報警,使運行人員疲倦于報警信號,從而無法及時發現設備異常情況,也無法通過軟報警去發現、分析問題。為此組織對軟報警點的核對清理,整理并修改數據庫里軟報警量程和上、下限報警值;通過數據庫和在裝軟件邏輯的比較,矯正和修改錯誤描述,刪除操作員站里重復和沒有必要的軟報警點,對所有軟報警重新進行分組、分級,采用不同的顏色并開通操作員站聲音報警,進行報警信號的綜合應用研究,使軟報警在運行人員監盤中發揮作用。

(4)合理設置進入保護聯鎖系統的模擬量定值信號故障診斷功能的處理,如信號變化速率診斷處理功能的利用,可減少因接線松

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論