




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
烏海市重點中學2023屆初三下學期4月階段練習(一模)數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>52.二次函數y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數).其中正確結論的個數是()A.4個 B.3個 C.2個 D.1個3.實數的相反數是()A. B. C. D.4.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,25.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數量關系為A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=16.若x是2的相反數,|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或47.若二次函數的圖象經過點(﹣1,0),則方程的解為()A., B., C., D.,8.下列運算正確的是()A.5a+2b=5(a+b) B.a+a2=a3C.2a3?3a2=6a5 D.(a3)2=a59.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了132件.如果全組共有x名同學,則根據題意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×210.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數為()A.60° B.65° C.70° D.75°二、填空題(本大題共6個小題,每小題3分,共18分)11.若函數y=m-2x12.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.13.中國的《九章算術》是世界現代數學的兩大源泉之一,其中有一問題:“今有牛五,羊二,值金十兩.牛二,羊五,值金八兩。問牛羊各值金幾何?”譯文:今有牛5頭,羊2頭,共值金10兩,牛2頭,羊5頭,共值金8兩.問牛、羊每頭各值金多少?設牛、羊每頭各值金兩、兩,依題意,可列出方程為___________________.14.數據﹣2,0,﹣1,2,5的平均數是_____,中位數是_____.15.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復試驗后發現,摸到紅球的頻率穩定在0.3左右,則m的值約為__________.16.如圖,一艘輪船自西向東航行,航行到A處測得小島C位于北偏東60°方向上,繼續向東航行10海里到達點B處,測得小島C在輪船的北偏東15°方向上,此時輪船與小島C的距離為_________海里.(結果保留根號)三、解答題(共8題,共72分)17.(8分)某通訊公司推出了A,B兩種上寬帶網的收費方式(詳情見下表)設月上網時間為xh(x為非負整數),請根據表中提供的信息回答下列問題(1)設方案A的收費金額為y1元,方案B的收費金額為y2元,分別寫出y1,y2關于x的函數關系式;(2)當35<x<50時,選取哪種方式能節省上網費,請說明理由18.(8分)先化簡代數式,再從范圍內選取一個合適的整數作為的值代入求值。19.(8分)化簡:20.(8分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉,旋轉角記為θ(0°≤θ≤90°),并使各邊長變為原來的n倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形21.(8分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻再摸球.若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.22.(10分)如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長度.(1)壩底BC的長度.23.(12分)先化簡,再求值:,其中與2,3構成的三邊,且為整數.24.如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當點P從點A運動到點B時,點O也隨之運動,求點O經過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先利用勾股定理計算出OP=1,然后根據點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.2、D【解析】①因為二次函數的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,當x=﹣3時,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①選項結論正確;②∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此選項結論不正確;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴關于x的一元二次方程ax2+(b﹣1)x+c=0有實數根;④由圖象得:當x>﹣1時,y隨x的增大而減小,∵當k為常數時,0≤k2≤k2+1,∴當x=k2的值大于x=k2+1的函數值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此選項結論不正確;所以正確結論的個數是1個,故選D.3、D【解析】
根據相反數的定義求解即可.【詳解】的相反數是-,故選D.【點睛】本題考查了實數的性質,在一個數的前面加上負號就是這個數的相反數.4、D【解析】
根據邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.5、B【解析】試題分析:根據作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.6、D【解析】
直接利用相反數以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數,|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數的混合運算,正確得出x,y的值是解題關鍵.7、C【解析】
∵二次函數的圖象經過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.8、C【解析】
直接利用合并同類項法則以及單項式乘以單項式、冪的乘方運算法則分別化簡得出答案.【詳解】A、5a+2b,無法計算,故此選項錯誤;B、a+a2,無法計算,故此選項錯誤;C、2a3?3a2=6a5,故此選項正確;D、(a3)2=a6,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及單項式乘以單項式、冪的乘方運算,正確掌握運算法則是解題關鍵.9、B【解析】全組有x名同學,則每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,所以,x(x-1)=132,故選B.10、C【解析】
由等腰三角形的性質可求∠ACD=70°,由平行線的性質可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質,平行線的性質,是基礎題.二、填空題(本大題共6個小題,每小題3分,共18分)11、m>2【解析】試題分析:有函數y=m考點:反比例函數的性質.12、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.13、【解析】【分析】牛、羊每頭各值金兩、兩,根據等量關系:“牛5頭,羊2頭,共值金10兩”,“牛2頭,羊5頭,共值金8兩”列方程組即可.【詳解】牛、羊每頭各值金兩、兩,由題意得:,故答案為:.【點睛】本題考查了二元一次方程組的應用,弄清題意,找出等量關系列出方程組是關鍵.14、0.80【解析】
根據中位數的定義和平均數的求法計算即可,中位數是將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.【詳解】平均數=(?2+0?1+2+5)÷5=0.8;把這組數據按從大到小的順序排列是:5,2,0,-1,-2,故這組數據的中位數是:0.故答案為0.8;0.【點睛】本題考查了平均數與中位數的定義,解題的關鍵是熟練的掌握平均數與中位數的定義.15、3【解析】
在同樣條件下,大量重復實驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,列出等式解答.【詳解】解:根據題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機事件概率的意義,關鍵是要知道在同樣條件下,大量重復實驗時,隨機事件發生的頻率逐漸穩定在概率附近.16、5【解析】
如圖,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性質求出BC即可.【詳解】如圖,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案為:5.【點睛】本題考查了解直角三角形的應用-方向角問題,解題的關鍵是學會添加常用輔助線,構造特殊三角形解決問題.三、解答題(共8題,共72分)17、(1),;(2)當35<x<1時,選擇B方式能節省上網費,見解析.【解析】
(1)根據兩種方式的收費標準,進行分類討論即可求解;
(2)當35<x<1時,計算出y1-y2的值,即可得出答案.【詳解】解:(1)由題意得:;即;;即;(2)選擇B方式能節省上網費當35<x<1時,有y1=3x-45,y2=1.:y1-y2=3x-45-1=3x-2.記y=3x-2因為3>4,有y隨x的增大而增大當x=35時,y=3.所以當35<x<1時,有y>3,即y>4.所以當35<x<1時,選擇B方式能節省上網費【點睛】此題考查了一次函數的應用,注意根據圖表得出解題需要的信息,難度一般,正確理解收費標準求出函數解析式是解題的關鍵.18、-2【解析】
先根據分式的混合運算順序和運算法則化簡原式,再選取使分式有意義的x的值代入計算可得.【詳解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合條件的x的值為x=2,則原式=-=-2.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則.19、x+2【解析】
先把括號里的分式通分,化簡,再計算除法.【詳解】解:原式==x+2【點睛】此題重點考察學生對分式的化簡的應用,掌握通分和約分是解題的關鍵.20、(1);(2);(3).【解析】
(1)根據定義可知△ABC∽△AB′C′,再根據相似三角形的面積之比等于相似比的平方即可;(2)根據四邊形是矩形,得出,進而得出,根據30°直角三角形的性質即可得出答案;(3)根據四邊形ABB′C′為正方形,從而得出,再根據等腰直角三角形的性質即可得出答案.【詳解】解:(1)∵△AB′C′的邊長變為了△ABC的n倍,∴△ABC∽△AB′C′,∴,故答案為:.(2)四邊形是矩形,∴..在中,,...(3)若四邊形ABB′C′為正方形,則,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案為:.【點睛】本題考查了幾何變換中的新定義問題,以及相似三角形的判定和性質,理解[θ,n]的意義是解題的關鍵.21、(1);(2).【解析】
(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據一共出現的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.22、(1)背水坡的長度為米;(1)壩底的長度為116米.【解析】
(1)分別過點、作,垂足分別為點、,結合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【詳解】(1)分別過點、作,垂足分別為點、,根據題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長度為米.(1)在中,,∴(米),∴(米)答:壩底的長度為116米.【點睛】本題考查的知識點是解直角三角形的應用-坡度坡角問題,解題的關鍵是熟練的掌握解直角三角形的應用-坡度坡角問題.23、1【解析】試題分析:先進行分式的除法運算,再進行分式的加減法運算,根據三角形三邊的關系確定出a的值,然后代入進行計算即可.試題解析:原式=,∵a與2、3構成△ABC的三邊,∴3?2<a<3+2,即1<a<5,又∵a為整數,∴a=2或3或4,∵當x=2或3時,原分式無意義,應舍去,∴當a=4時,原式==124、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關系證出∠AEP=∠PBC,得出△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區保安班長管理辦法
- 掃黃大型酒店管理辦法
- 展覽展示公司管理辦法
- 聊城公務接待管理辦法
- 建筑弱電培訓課件大全
- 股票職業交易培訓課件
- 肝腎關系教學課件
- 第五單元五上數學試卷
- 甘肅高考題數學試卷
- 日常用電培訓課件
- 干濕交替環境下混凝土受硫酸鹽侵蝕劣化機理
- 骨科手術后的康復用具與輔助器具
- 小學特色課程《口風琴課程》校本教材
- 《如何寫文獻綜述》課件
- 汽車美容店計劃書案例
- 信息機房火災事故應急處置方案
- 統計職業道德規范內容和要求
- GB/T 16886.12-2023醫療器械生物學評價第12部分:樣品制備與參照材料
- 人衛慕課《走進肺功能》試題答案
- 2022-2023學年海南省高一上學期期末學業水平診斷化學試題(一)
- 高中英語句式轉換專題訓練100題(含參考答案)
評論
0/150
提交評論