山西省陽泉市2021-2022學年中考數學適應性模擬試題含解析_第1頁
山西省陽泉市2021-2022學年中考數學適應性模擬試題含解析_第2頁
山西省陽泉市2021-2022學年中考數學適應性模擬試題含解析_第3頁
山西省陽泉市2021-2022學年中考數學適應性模擬試題含解析_第4頁
山西省陽泉市2021-2022學年中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省陽泉市2021-2022學年中考數學適應性模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一元一次不等式2(1+x)>1+3x的解集在數軸上表示為()A. B. C. D.2.實數在數軸上的點的位置如圖所示,則下列不等關系正確的是()A.a+b>0 B.a-b<0 C.<0 D.>3.一個六邊形的六個內角都是120°(如圖),連續四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.164.在平面直角坐標系中,位于第二象限的點是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)5.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個6.據統計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數依次是:27,30,29,25,26,28,29,那么這組數據的中位數和眾數分別是()A.25和30 B.25和29 C.28和30 D.28和297.下列圖形是中心對稱圖形的是()A. B. C. D.8.如圖分別是某班全體學生上學時乘車、步行、騎車人數的分布直方圖和扇形統計圖(兩圖都不完整),下列結論錯誤的是()A.該班總人數為50 B.步行人數為30C.乘車人數是騎車人數的2.5倍 D.騎車人數占20%9.若,,則的值是()A.2 B.﹣2 C.4 D.﹣410.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π11.函數在同一直角坐標系內的圖象大致是()A. B. C. D.12.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F,要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.14.如圖,在△ABC中,∠ABC=90°,AB=CB,F為AB延長線上一點,點E在BC上,且AE=CF,若∠CAE=32°,則∠ACF的度數為__________°.15.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發,勻速行駛,甲出發1小時后乙再出發,乙以2km/h的速度度勻速行駛1小時后提高速度并繼續勻速行駛,結果比甲提前到達.甲、乙兩人離開A地的距離y(km)與時間t(h)的關系如圖所示,則甲出發_____小時后和乙相遇.16.如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.17.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.18.因式分解:3x2-6xy+3y2=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的一元二次方程3x2﹣6x+1﹣k=0有實數根,k為負整數.求k的值;如果這個方程有兩個整數根,求出它的根.20.(6分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.21.(6分)已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.(1)求拋物線y=ax2+bx+2的函數表達式;(2)求直線BC的函數表達式;(3)點E是點B關于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,①當點P在線段BC上時,連接EP,若EP⊥BC,請直接寫出線段BP與線段AE的關系;②過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.22.(8分)先化簡,再求值:,其中,.23.(8分)解不等式組:,并把解集在數軸上表示出來.24.(10分)先化簡,再求值:,其中.25.(10分)(1)如圖1,正方形ABCD中,點E,F分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數量關系,并證明你的結論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數量關系;.26.(12分)在陽光體育活動時間,小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.27.(12分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關聯點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關聯點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關聯點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關聯點”,求n的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數形結合思想是初中常用的方法之一.2、C【解析】

根據點在數軸上的位置,可得a,b的關系,根據有理數的運算,可得答案.【詳解】解:由數軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數與數軸,利用點在數軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數的運算.3、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.4、D【解析】

點在第二象限的條件是:橫坐標是負數,縱坐標是正數,直接得出答案即可.【詳解】根據第二象限的點的坐標的特征:橫坐標符號為負,縱坐標符號為正,各選項中只有C(﹣3,1)符合,故選:D.【點睛】本題考查點的坐標的性質,解題的關鍵是掌握點的坐標的性質.5、C【解析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、D【解析】【分析】根據中位數和眾數的定義進行求解即可得答案.【詳解】對這組數據重新排列順序得,25,26,27,28,29,29,30,處于最中間是數是28,∴這組數據的中位數是28,在這組數據中,29出現的次數最多,∴這組數據的眾數是29,故選D.【點睛】本題考查了中位數和眾數的概念,熟練掌握眾數和中位數的概念是解題的關鍵.一組數據中出現次數最多的數據叫做眾數,一組數據按從小到大(或從大到小)排序后,位于最中間的數(或中間兩數的平均數)是這組數據的中位數.7、B【解析】

根據中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!8、B【解析】

根據乘車人數是25人,而乘車人數所占的比例是50%,即可求得總人數,然后根據百分比的含義即可求得步行的人數,以及騎車人數所占的比例.【詳解】A、總人數是:25÷50%=50(人),故A正確;B、步行的人數是:50×30%=15(人),故B錯誤;C、乘車人數是騎車人數倍數是:50%÷20%=2.5,故C正確;D、騎車人數所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.9、D【解析】因為,所以,因為,故選D.10、D【解析】

根據題意可得到CE=2,然后根據S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質及面積的計算.11、C【解析】

根據a、b的符號,針對二次函數、一次函數的圖象位置,開口方向,分類討論,逐一排除.【詳解】當a>0時,二次函數的圖象開口向上,一次函數的圖象經過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數a>0,b>0,排除B.故選C.12、A【解析】分析:根據中心對稱的定義,結合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項正確;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤;故選:A.點睛:本題考查了中心對稱圖形的特點,屬于基礎題,判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1≤x≤1【解析】

此題需要運用極端原理求解;①BP最小時,F、D重合,由折疊的性質知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據折疊的性質即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當F、D重合時,BP的值最小;根據折疊的性質知:AF=PF=5;在Rt△PFC中,PF=5,FC=1,則PC=4;∴BP=xmin=1;②當E、B重合時,BP的值最大;由折疊的性質可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關鍵.14、58【解析】

根據HL證明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【詳解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△CBF和Rt△ABE中∴Rt△CBF≌Rt△ABE(HL),∴∠FCB=∠EAB,∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案為58【點睛】本題考查了全等三角形的性質和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性質是全等三角形的對應邊相等,對應角相等.15、【解析】

由圖象得出解析式后聯立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點睛】此題考查一次函數的應用,關鍵是由圖象得出解析式解答.16、【解析】

認真審題,根據垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標為(4,0),點B的坐標為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.17、1【解析】

根據等邊三角形的性質可得OC=AC,∠ABD=30°,根據“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據直角三角形的性質可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質,等邊三角形的性質,熟練運用全等三角形的判定是本題的關鍵.18、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點:提公因式法與公式法的綜合運用三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(2)k=﹣2,﹣2.(2)方程的根為x2=x2=2.【解析】

(2)根據方程有實數根,得到根的判別式的值大于等于0列出關于k的不等式,求出不等式的解集即可得到k的值;(2)將k的值代入原方程,求出方程的根,經檢驗即可得到滿足題意的k的值.【詳解】解:(2)根據題意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k為負整數,∴k=﹣2,﹣2.(2)當k=﹣2時,不符合題意,舍去;當k=﹣2時,符合題意,此時方程的根為x2=x2=2.【點睛】本題考查了根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:(2)△>0時,方程有兩個不相等的實數根;(2)△=0時,方程有兩個相等的實數根;(3)△<0時,方程沒有實數根.也考查了一元二次方程的解法.20、(1)見解析;(2)AB=4【解析】

(1)過點B作BF⊥CE于F,根據同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據矩形的對邊相等可得AE=BF,從而得證;(2)由(1)可知:CF=DE,四邊形AEFB是矩形,從而求得AB=EF,利用銳角三角函數的定義得出DE和CE的長,即可求得AB的長.【詳解】(1)證明:過點B作BH⊥CE于H,如圖1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90°,∴四邊形ABHE是矩形,∴AE=BH.∴AE=CE.(2)∵四邊形ABHE是矩形,∴AB=HE.∵在Rt△CED中,,設DE=x,CE=3x,∴.∴x=2.∴DE=2,CE=3.∵CH=DE=2.∴AB=HE=3-2=4.【點睛】本題考查了全等三角形的判定與性質,矩形的判定與性質,銳角三角函數的定義,難度中等,作輔助線構造出全等三角形與矩形是解題的關鍵.21、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①線段BP與線段AE的關系是相互垂直;②點P的坐標為:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】

(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b即可求解;(3)①AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;②考慮當P點在線段BC上時和在線段BE上時兩種情況,利用PM′=PM即可求解.【詳解】(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函數的表達式為y=﹣x2+x+2;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b,解得:k=2,b=2,故:直線BC的函數表達式為y=2x+2,(3)①E是點B關于y軸的對稱點,E坐標為(3,﹣4),則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴線段BP與線段AE的關系是相互垂直;②設點P的橫坐標為m,當P點在線段BC上時,P坐標為(m,2m+2),M坐標為(m,2),則PM=2m,直線MM′⊥BC,∴kMM′=﹣,直線MM′的方程為:y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),由題意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故點P的坐標為(﹣4±2,﹣8±4);當P點在線段BE上時,點P坐標為(m,﹣4),點M坐標為(m,2),則PM=6,直線MM′的方程不變,為y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,無解;故點P的坐標為(0,﹣4)或(﹣,﹣4);綜上所述:點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【點睛】主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.22、1【解析】分析:先把小括號內的通分,按照分式的減法和分式的除法法則進行化簡,再把字母的值代入運算即可.詳解:原式

當x=-1、y=2時,

原式=-(-1)2+2×22

=-1+8

=1.點睛:本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則.23、則不等式組的解集是﹣1<x≤3,不等式組的解集在數軸上表示見解析.【解析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分就是不等式組的解集.【詳解】解不等式①得:x>﹣1,解不等式②得:x≤3,則不等式組的解集是:﹣1<x≤3,不等式組的解集在數軸上表示為:.【點睛】本題考查了解一元一次不等式組,熟知確定解集的方法“同大取大,同小取小,大小小大中間找,大大小小無處找”是解題的關鍵.也考查了在數軸上表示不等式組的解集.24、,4.【解析】

先括號內通分,然后計算除法,最后代入化簡即可.【詳解】原式=.當時,原式=4.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則.25、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據正方形的性質,可得∠ABC與∠C的關系,AB與BC的關系,根據兩直線垂直,可得∠AMB的度數,根據直角三角形銳角的關系,可得∠ABM與∠BAM的關系,根據同角的余角相等,可得∠BAM與∠CBF的關系,根據ASA,可得△ABE≌△BCF,根據全等三角形的性質,可得答案;(2)根據矩形的性質得到∠ABC=∠C,由余角的性質得到∠BAM=∠CBF,根據相似三角形的性質即可得到結論;(3)結論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點睛】本題考查了四邊形綜合題、相似三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論