




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優秀、良好、合格、不合格四個等級,繪制了如圖所示統計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人2.如圖,在中,,的垂直平分線交于點,垂足為.如果,則的長為()A.2 B.3 C.4 D.63.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個正根是()A.的長 B.的長 C.的長 D.的長4.在數軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④5.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,FN∥DC,則∠F的度數為()A.70° B.80° C.90° D.100°6.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.47.如圖,已知,用尺規作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點8.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.9.整數a、b在數軸上對應點的位置如圖,實數c在數軸上且滿足,如果數軸上有一實數d,始終滿足,則實數d應滿足().A. B. C. D.10.-3的倒數是()A.3 B.13 C.-1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,小紅作出了邊長為1的第1個正△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點A2,B2,C2,作出了第2個正△A2B2C2,算出了正△A2B2C2的面積,用同樣的方法,作出了第3個正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第8個正△A8B8C8的面積是_____.12.如圖,已知AB∥CD,F為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數為整數,則∠C的度數為_____.13.已知是整數,則正整數n的最小值為___14.小華到商場購買賀卡,他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡若小華先買了3張3D立體賀卡,則剩下的錢恰好還能買______張普通賀卡.15.對于一切不小于2的自然數n,關于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),則______16.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.18.(8分)我市正在創建“全國文明城市”,某校擬舉辦“創文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.A、B兩種獎品每件各多少元?現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?19.(8分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數與反比例函數的解析式;求△AOB的面積.20.(8分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.特例探索(1)如圖1,當∠ABE=45°,c=時,a=,b=;如圖2,當∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結果,猜想a2,b2,c2三者之間的關系,用等式表示出來,請利用圖1證明你發現的關系式;拓展應用(1)如圖4,在□ABCD中,點E,F,G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.21.(8分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:本次抽樣調查共抽取了多少名學生?求測試結果為C等級的學生數,并補全條形圖;若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.22.(10分)某公司對用戶滿意度進行問卷調查,將連續6天內每天收回的問卷數進行統計,繪制成如圖所示的統計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數是2.請你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動共收回問卷共_________份;(3)市場部對收回的問卷統一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?23.(12分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大小.24.今年,我國海關總署嚴厲打擊“洋垃圾”違法行動,堅決把“洋垃圾”拒于國門之外.如圖,某天我國一艘海監船巡航到A港口正西方的B處時,發現在B的北偏東60°方向,相距150海里處的C點有一可疑船只正沿CA方向行駛,C點在A港口的北偏東30°方向上,海監船向A港口發出指令,執法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時D點與B點的距離為75海里.(1)求B點到直線CA的距離;(2)執法船從A到D航行了多少海里?(結果保留根號)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
先求出800米跑不合格的百分率,再根據用樣本估計總體求出估值.【詳解】400×人.故選C.【點睛】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.2、C【解析】
先利用垂直平分線的性質證明BE=CE=8,再在Rt△BED中利用30°角的性質即可求解ED.【詳解】解:因為垂直平分,所以,在中,,則;故選:C.【點睛】本題主要考查了線段垂直平分線的性質、30°直角三角形的性質,線段的垂直平分線上的點到線段的兩個端點的距離相等.3、B【解析】【分析】可以利用求根公式求出方程的根,根據勾股定理求出AB的長,進而求得AD的長,即可發現結論.【解答】用求根公式求得:∵∴∴AD的長就是方程的正根.故選B.【點評】考查解一元二次方程已經勾股定理等,熟練掌握公式法解一元二次方程是解題的關鍵.4、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數與數軸的關系5、B【解析】
首先利用平行線的性質得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進而求出∠B的度數以及得出∠F的度數.【詳解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵將△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故選B.【點睛】主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.6、B【解析】
圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.7、D【解析】
根據作一個角等于已知角的作法即可得出結論.【詳解】解:用尺規作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫弧①,分別交OA、OB于點E、F,
第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫弧.
故選:D.【點睛】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.8、D【解析】
過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.9、D【解析】
根據a≤c≤b,可得c的最小值是﹣1,根據有理數的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點睛】本題考查了實數與數軸,利用a≤c≤b得出c的最小值是﹣1是解題的關鍵.10、C【解析】
由互為倒數的兩數之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
根據相似三角形的性質,先求出正△A2B2C2,正△A3B3C3的面積,依此類推△AnBnCn的面積是,從而求出第8個正△A8B8C8的面積.【詳解】正△A1B1C1的面積是,而△A2B2C2與△A1B1C1相似,并且相似比是1:2,則面積的比是,則正△A2B2C2的面積是×;因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是×()2;依此類推△AnBnCn與△An-1Bn-1Cn-1的面積的比是,第n個三角形的面積是()n-1.所以第8個正△A8B8C8的面積是×()7=.故答案為.【點睛】本題考查了相似三角形的性質及應用,相似三角形面積的比等于相似比的平方,找出規律是關鍵.12、36°或37°.【解析】分析:先過E作EG∥AB,根據平行線的性質可得∠AEF=∠BAE+∠DFE,再設∠CEF=x,則∠AEC=2x,根據6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進而得到∠C的度數.詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數為整數,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質以及三角形外角性質的運用,解決問題的關鍵是作平行線,解題時注意:兩直線平行,內錯角相等.13、1【解析】
因為是整數,且,則1n是完全平方數,滿足條件的最小正整數n為1.【詳解】∵,且是整數,
∴是整數,即1n是完全平方數;
∴n的最小正整數值為1.
故答案為:1.【點睛】主要考查了二次根式的定義,關鍵是根據乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數是非負數進行解答.14、1【解析】
根據已知他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡得:1張3D立體賀卡的單價是1張普通賀卡單價的4倍,所以設1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡,根據3張3D立體賀卡張普通賀卡張3D立體賀卡,可得結論.【詳解】解:設1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡.
則1張普通賀卡為:元,
由題意得:,
,
答:剩下的錢恰好還能買1張普通賀卡.
故答案為:1.【點睛】本題考查了一元一次方程的應用以及列代數式,解題的關鍵是:根據總價單價數量列式計算.15、﹣.【解析】試題分析:由根與系數的關系得:,則,則,∴原式=.點睛:本題主要考查的就是一元二次方程的韋達定理以及規律的整理,屬于中等題型.解決這個問題的關鍵就是要想到使用韋達定理,然后根據計算的法則得出規律,從而達到簡便計算的目的.16、3【解析】試題分析:根據點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據E、F分別為中點可得:EF為△ABC的中位線,根據中位線的性質可得:EF=AB=3.考點:(1)、直角三角形的性質;(2)、中位線的性質三、解答題(共8題,共72分)17、【解析】
先根據平行線的性質證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,FG∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設BG=2k,GH=4k,HC=1k,∴DF=2k,FE=1k,∴DE=5k,∴.【點睛】本題考查了平行線的性質和三角形相似的判定和相似比.18、(1)A種獎品每件16元,B種獎品每件4元.(2)A種獎品最多購買41件.【解析】【分析】(1)設A種獎品每件x元,B種獎品每件y元,根據“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據總價=單價×購買數量結合總費用不超過900元,即可得出關于a的一元一次不等式,解之取其中最大的整數即可得出結論.【詳解】(1)設A種獎品每件x元,B種獎品每件y元,根據題意得:,解得:,答:A種獎品每件16元,B種獎品每件4元;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據題意得:16a+4(100﹣a)≤900,解得:a≤,∵a為整數,∴a≤41,答:A種獎品最多購買41件.【點睛】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據不等關系,正確列出不等式.19、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點A坐標代入反比例函數求出m的值,從而得到點A的坐標以及反比例函數解析式,再將點B坐標代入反比例函數求出n的值,從而得到點B的坐標,然后利用待定系數法求一次函數解析式求解;(2)設AB與x軸相交于點C,根據一次函數解析式求出點C的坐標,從而得到點OC的長度,再根據S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標為(﹣3,2),反比例函數解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數解析式為y=﹣2x﹣1;(2)設AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數與一次函數的交點問題.20、(1)2,2;2,2;(2)+=5;(1)AF=2.【解析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如圖2,連接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案為2,2,2,2;(2)猜想:a2+b2=5c2,如圖1,連接EF,設∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如圖2,連接AC,EF交于H,AC與BE交于點Q,設BE與AF的交點為P,∵點E、G分別是AD,CD的中點,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分別是AD,BC的中點,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四邊形ABFE是平行四邊形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分別是△AFE的中線,由(2)的結論得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考點:相似形綜合題.21、(1)50;(2)16;(3)56(4)見解析【解析】
(1)用A等級的頻數除以它所占的百分比即可得到樣本容量;
(2)用總人數分別減去A、B、D等級的人數得到C等級的人數,然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數;
(4)畫樹狀圖展示12種等可能的結果數,再找出抽取的兩人恰好都是男生的結果數,然后根據概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:
共有12種等可能的結果數,其中抽取的兩人恰好都是男生的結果數為2,
所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統計圖.22、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數之比即可得出結論;(2)由于組距相同,各矩形的高度比即為頻數的比,可由數據總數=某組的頻數÷頻率計算;(3)根據概率公式計算即可;(4)分別計算第4天,第6天的獲獎率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設份數為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎率,第6天收回問卷獲獎率.∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司組織體檢活動方案
- 公司氣氛年會策劃方案
- 公司春訓活動策劃方案
- 公司植樹節春游活動方案
- 公司環保推廣活動方案
- 公司月度拓展活動方案
- 公司放假前活動方案
- 公司用凈水器展銷活動方案
- 公司給員工做美甲活動方案
- 公司福利電影票活動方案
- 江蘇泰州市:2024年小升初英語模擬卷(B)(譯林版三起)
- 六年級下冊語文試題-“快樂讀書吧”練習題|部編版(含答案)
- 國家開放大學《Python語言基礎》實驗9:函數定義和調用參考答案
- 高速公路交通事故處理流程與責任認定
- 觀光電梯方案
- 混凝土箱涵技術規程
- 電力電子技術在電力系統中的應用
- 《環保節能培訓》課件
- 視網膜靜脈阻塞護理查房
- 員工健康管理規定
- 飛機結構設計課件
評論
0/150
提交評論