




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數關系的圖象大致為()A. B.C. D.2.計算(-ab2)3÷(-ab)2的結果是()A.ab4B.-ab4C.ab3D.-ab33.如圖,,交于點,平分,交于.若,則
的度數為()
A.35o B.45o C.55o D.65o4.如果關于x的分式方程有負分數解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數a的積是()A.-3 B.0 C.3 D.95.如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發,沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數圖象大致是()A. B. C. D.6.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.7.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°8.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值29.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數根;其中正確的是()A.①③ B.②③ C.③④ D.②④10.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長度為_____12.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數關系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.13.下表記錄了甲、乙、丙、丁四名跳遠運動員選拔賽成績的平均數與方差s2:甲乙丙丁平均數(cm)561560561560方差s2(cm2)3.53.515.516.5根據表中數據,要從中選擇一名成績好又發揮穩定的運動員參加比賽,應該選擇_____.14.如圖,在平面直角坐標系中,反比例函數y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.15.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數為_____.16.4=.三、解答題(共8題,共72分)17.(8分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.特例探索(1)如圖1,當∠ABE=45°,c=時,a=,b=;如圖2,當∠ABE=10°,c=4時,a=,b=;歸納證明(2)請你觀察(1)中的計算結果,猜想a2,b2,c2三者之間的關系,用等式表示出來,請利用圖1證明你發現的關系式;拓展應用(1)如圖4,在□ABCD中,點E,F,G分別是AD,BC,CD的中點,BE⊥EG,AD=,AB=1.求AF的長.18.(8分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統計,制成了如下不完整的統計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據所給信息,解答以下問題:(1)在扇形統計圖中,C對應的扇形的圓心角是度;(2)補全條形統計圖;(3)所抽取學生的足球運球測試成績的中位數會落在等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?19.(8分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.請結合統計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.20.(8分)某新建小區要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數).①當x=90時,求出乙隊修路的天數;②求y與x之間的函數關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.21.(8分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).22.(10分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的統計圖,已知“查資料”的人數是40人.請你根據以上信息解答下列問題:在扇形統計圖中,“玩游戲”對應的百分比為,圓心角度數是度;補全條形統計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數.23.(12分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數;四邊形ABCD的面積(結果保留根號).24.某校檢測學生跳繩水平,抽樣調查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數是人,補全頻數分布直方圖,扇形圖中m=;(2)本次調查數據中的中位數落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優秀,那么該校4500名學生中“1分鐘跳繩”成績為優秀的大約有多少人?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數,∴自變量x的系數是固定值,∴這個函數圖象肯定是一次函數圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.2、B【解析】根據積的乘方的運算法則,先分別計算積的乘方,然后再根據單項式除法法則進行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.3、D【解析】分析:根據平行線的性質求得∠BEC的度數,再由角平分線的性質即可求得∠CFE的度數.詳解:又∵EF平分∠BEC,.故選D.點睛:本題主要考查了平行線的性質和角平分線的定義,熟知平行線的性質和角平分線的定義是解題的關鍵.4、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數a取值為﹣3;﹣1;1;3,之積為1.故選D.5、B【解析】解:當點P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時間t的增大而增大;當點P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減小;當點P在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減小;故選B.6、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點睛】考查的是銳角三角函數的定義、等腰三角形的性質及勾股定理.7、A【解析】
利用三角形內角和求∠B,然后根據相似三角形的性質求解.【詳解】解:根據三角形內角和定理可得:∠B=30°,根據相似三角形的性質可得:∠B′=∠B=30°.故選:A.【點睛】本題考查相似三角形的性質,掌握相似三角形對應角相等是本題的解題關鍵.8、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.9、D【解析】
①錯誤.由題意a>1.b>1,c<1,abc<1;
②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;
③錯誤.拋物線與x軸的另一個交點是(1,1);
④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.【詳解】解:∵拋物線開口向上,∴a>1,
∵拋物線交y軸于負半軸,∴c<1,
∵對稱軸在y軸左邊,∴-<1,
∴b>1,
∴abc<1,故①錯誤.
∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,
當ax2+bx+c<mx+n時,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,
拋物線與x軸的另一個交點是(1,1),故③錯誤,
∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,
∴方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.
故選:D.【點睛】本題考查二次函數的性質、二次函數與不等式,二次函數與一元二次方程等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數形結合的思想解決問題.10、D【解析】
首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉換可得鄰邊相等,則四邊形為菱形.所以根據菱形的性質進行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時,該等式成立.故不一定正確.故選:.【點睛】本題考查了菱形的判定與性質.注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據勾股定理即可求得AE;根據三角形的面積公式可求得BH,進而可得到BF的長度;結合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據勾股定理有AE=AB+BE代入數據求得AE=5根據三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數據求得CF=故答案為【點睛】此題考查矩形的性質和折疊問題,解題關鍵在于利用好折疊的性質12、2.1.【解析】
根據題意和函數圖象中的數據可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數的圖象,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.13、甲【解析】
首先比較平均數,平均數相同時選擇方差較小的運動員參加.【詳解】∵,∴從甲和丙中選擇一人參加比賽,∵,∴選擇甲參賽,故答案為甲.【點睛】此題考查了平均數和方差,關鍵是根據方差反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.14、1【解析】
連接OB,由矩形的性質和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數的系數k的幾何意義:在反比例函數y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.15、72°【解析】
首先根據正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點睛】本題考查的是正多邊形和圓,利用數形結合求解是解答此題的關鍵16、2【解析】試題分析:根據算術平方根的定義,求數a的算術平方根,也就是求一個正數x,使得x2=a,則x就是a的算術平方根,特別地,規定0的算術平方根是0.∵22=4,∴4=2.考點:算術平方根.三、解答題(共8題,共72分)17、(1)2,2;2,2;(2)+=5;(1)AF=2.【解析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如圖2,連接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案為2,2,2,2;(2)猜想:a2+b2=5c2,如圖1,連接EF,設∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如圖2,連接AC,EF交于H,AC與BE交于點Q,設BE與AF的交點為P,∵點E、G分別是AD,CD的中點,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分別是AD,BC的中點,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四邊形ABFE是平行四邊形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分別是△AFE的中線,由(2)的結論得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考點:相似形綜合題.18、(1)117(2)見解析(3)B(4)30【解析】
(1)先根據B等級人數及其百分比求得總人數,總人數減去其他等級人數求得C等級人數,繼而用360°乘以C等級人數所占比例即可得;(2)根據以上所求結果即可補全圖形;(3)根據中位數的定義求解可得;(4)總人數乘以樣本中A等級人數所占比例可得.【詳解】解:(1)∵總人數為18÷45%=40人,∴C等級人數為40﹣(4+18+5)=13人,則C對應的扇形的圓心角是360°×=117°,故答案為117;(2)補全條形圖如下:(3)因為共有40個數據,其中位數是第20、21個數據的平均數,而第20、21個數據均落在B等級,所以所抽取學生的足球運球測試成績的中位數會落在B等級,故答案為B.(4)估計足球運球測試成績達到A級的學生有300×=30人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計該校選擇“跑步”這種活動的學生約有800人;(3)畫樹狀圖為:共有12種等可能的結果數,其中每班所抽到的兩項方式恰好是“跑步”和“跳繩”的結果數為2,所以每班所抽到的兩項方式恰好是“跑步”和“跳繩”的概率=.考點:1.用樣本估計總體;2.扇形統計圖;3.條形統計圖;4.列表法與樹狀圖法.20、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】
(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據:甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數關系式;③根據:甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【詳解】解:(1)甲隊單獨完成這項工程所需天數n=1050÷30=35(天),則乙單獨完成所需天數為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數關系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【點睛】本題考查了一次函數的應用,解題的關鍵是熟練的掌握一次函數的應用.21、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據△ADE≌△CBF,和平行四邊形ABCD的性質及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 監理施工合同管理辦法
- 2025年電梯司機職業技能鑒定試卷高級版
- 2025年初中化學九年級上冊期中測試卷化學實驗操作技能
- 道路清潔養護管理辦法
- 鄭州離校宿舍管理辦法
- 異地任職薪酬管理辦法
- 2025年長假期間無人駕駛車輛安全生產工作方案范文
- 客船經營資質管理辦法
- 鄭州建筑土方管理辦法
- 幼兒園2025年春季特色課程開發計劃
- 衛生部手術分級目錄(2023年1月份修訂)
- LY/T 2121-2013檀香栽培技術規程
- GB/T 8312-2002茶咖啡堿測定
- 通信線路工程施工組織設計方案【實用文檔】doc
- 護士注冊健康體檢表下載【可直接打印版本】
- 預計財務報表編制及分析課件
- 骨科出科試題帶答案
- 河道基槽土方開挖專項施工方案
- 現代美國玉米商業育種的種質基礎概要
- GB∕T 4162-2022 鍛軋鋼棒超聲檢測方法
- 中醫治療室工作制度管理辦法
評論
0/150
提交評論