2022-2023學年廣東省廣州大附中中考數學模擬預測題含解析_第1頁
2022-2023學年廣東省廣州大附中中考數學模擬預測題含解析_第2頁
2022-2023學年廣東省廣州大附中中考數學模擬預測題含解析_第3頁
2022-2023學年廣東省廣州大附中中考數學模擬預測題含解析_第4頁
2022-2023學年廣東省廣州大附中中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是反比例函數(k為常數,k≠0)的圖象,則一次函數的圖象大致是()A. B. C. D.2.如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.3.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.4.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數最少是()A.4 B.5 C.6 D.75.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣36.二次函數y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數)在–1<x<4的范圍內有實數解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<77.已知:a、b是不等于0的實數,2a=3b,那么下列等式中正確的是()A.ab=23 B.a8.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④9.將1、、、按如圖方式排列,若規定(m、n)表示第m排從左向右第n個數,則(6,5)與(13,6)表示的兩數之積是()A. B.6 C. D.10.如圖,△ABC內接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.有四張質地、大小、反面完全相同的不透明卡片,正面分別寫著數字1,2,3,4,現把它們的正面向下,隨機擺放在桌面上,從中任意抽出一張,則抽出的數字是奇數的概率是.12.一個多邊形的內角和是,則它是______邊形.13.已知方程x2﹣5x+2=0的兩個解分別為x1、x2,則x1+x2﹣x1?x2的值為______.14.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.15.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側面展開圖的面積為.16.若關于x的方程x2﹣8x+m=0有兩個相等的實數根,則m=_____.三、解答題(共8題,共72分)17.(8分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點A在x軸上,點B在y軸上,點在二次函數的圖像上.(1)求二次函數的表達式;(2)求點A,B的坐標;(3)把△ABC沿x軸正方向平移,當點B落在拋物線上時,求△ABC掃過區域的面積.18.(8分)計算:2sin30°﹣|1﹣|+()﹣119.(8分)計算:|﹣1|+(﹣1)2018﹣tan60°20.(8分)一只不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有3,4,5,x,甲,乙兩人每次同時從袋中各隨機取出1個小球,并計算2個小球上的數字之和.記錄后將小球放回袋中攪勻,進行重復試驗,試驗數據如下表:摸球總次數1020306090120180240330450“和為8”出現的頻數210132430375882110150“和為8”出現的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續進行下去,根據上表提供的數據,出現和為8的頻率將穩定在它的概率附近,估計出現和為8的概率是________;如果摸出的2個小球上數字之和為9的概率是,那么x的值可以為7嗎?為什么?21.(8分)桌面上放有4張卡片,正面分別標有數字1,2,3,4,這些卡片除數字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數字,然后將這兩數相加.(1)請用列表或畫樹狀圖的方法求兩數和為5的概率;(2)若甲與乙按上述方式做游戲,當兩數之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲對雙方公平?22.(10分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關系,并說明理由;(2)若∠A=30°,AB=4,求的長.23.(12分)已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數量關系.(不必證明)24.計算:2﹣1+|﹣|++2cos30°

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】根據圖示知,反比例函數的圖象位于第一、三象限,∴k>0,∴一次函數y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數在定義域內是增函數,∴一次函數y=kx?k的圖象經過第一、三、四象限;故選:B.2、C【解析】

如圖作,FN∥AD,交AB于N,交BE于M.設DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,FN∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質、平行線分線段成比例定理、三角形中位線定理等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,學會利用參數解決問題,屬于中考常考題型.3、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.4、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數所以圖中的小正方體最少2+4=1.故選C.5、B【解析】

本題可對方程進行因式分解,也可把選項中的數代入驗證是否滿足方程.【詳解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故選:B.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的特點靈活選用合適的方法.本題運用的是因式分解法.6、B【解析】

利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數值的范圍為﹣2≤y<7,由于關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,然后利用函數圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數的性質、拋物線與x軸的交點、二次函數與一元二次方程,把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程是解題的關鍵.7、B【解析】∵2a=3b,∴ab=3故選B.8、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.9、B【解析】

根據數的排列方法可知,第一排:1個數,第二排2個數.第三排3個數,第四排4個數,…第m-1排有(m-1)個數,從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數,根據數的排列方法,每四個數一個輪回,根據題目意思找出第m排第n個數到底是哪個數后再計算.【詳解】第一排1個數,第二排2個數.第三排3個數,第四排4個數,…第m-1排有(m-1)個數,從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數,根據數的排列方法,每四個數一個輪回,由此可知:(1,5)表示第1排從左向右第5個數是,(13,1)表示第13排從左向右第1個數,可以看出奇數排最中間的一個數都是1,第13排是奇數排,最中間的也就是這排的第7個數是1,那么第1個就是,則(1,5)與(13,1)表示的兩數之積是1.故選B.10、C【解析】

如圖(見解析),連接BD、CD,根據圓周角定理可得,再根據相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據圓周角定理可得,再根據正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:這四個數中,奇數為1和3,則P(抽出的數字是奇數)=2÷4=.考點:概率的計算.12、六【解析】試題分析:這個正多邊形的邊數是n,則(n﹣2)?180°=720°,解得:n=1.則這個正多邊形的邊數是六,故答案為六.考點:多邊形內角與外角.13、1【解析】解:根據題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點睛:本題主要考查了根據與系數的關系,利用一元二次方程的兩個根x1、x2具有這樣的關系:x1+x2=,x1x2=是解題的關鍵.14、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.15、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.16、1【解析】

根據判別式的意義得到△=(﹣8)2﹣4m=0,然后解關于m的方程即可.【詳解】△=(﹣8)2﹣4m=0,解得m=1,故答案為:1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.三、解答題(共8題,共72分)17、(1);(2);(3).【解析】

(1)將點代入二次函數解析式即可;(2)過點作軸,證明即可得到即可得出點A,B的坐標;(3)設點的坐標為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區域的面積=代入計算即可.【詳解】解:(1)∵點在二次函數的圖象上,.解方程,得∴二次函數的表達式為.(2)如圖1,過點作軸,垂足為..,.在和中,∵,.∵點的坐標為,..(3)如圖2,把沿軸正方向平移,當點落在拋物線上點處時,設點的坐標為.解方程得:(舍去)或由平移的性質知,且,∴四邊形為平行四邊形,.掃過區域的面積==.【點睛】本題考查了二次函數與幾何綜合問題,涉及全等三角形的判定與性質,平行四邊形的性質與判定,勾股定理解直角三角形,解題的關鍵是靈活運用二次函數的性質與幾何的性質.18、4﹣【解析】

原式利用絕對值的代數意義,特殊角的三角函數值,負整數指數冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點睛】本題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.19、1【解析】

原式利用絕對值的代數意義,乘方的意義,以及特殊角的三角函數值計算即可求出值.【詳解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【點睛】本題考查了實數的運算,涉及了絕對值化簡、特殊角的三角函數值,熟練掌握各運算的運算法則是解題的關鍵.20、(1)出現“和為8”的概率是0.33;(2)x的值不能為7.【解析】

(1)利用頻率估計概率結合表格中數據得出答案即可;(2)假設x=7,根據題意先列出樹狀圖,得出和為9的概率,再與進行比較,即可得出答案.【詳解】解:(1)隨著試驗次數不斷增加,出現“和為8”的頻率逐漸穩定在0.33,故出現“和為8”的概率是0.33.(2)x的值不能為7.理由:假設x=7,則P(和為9)=≠,所以x的值不能為7.【點睛】此題主要考查了利用頻率估計概率以及樹狀圖法求概率,正確畫出樹狀圖是解題關鍵.21、(1)詳見解析;(2)4分.【解析】

(1)根據題意用列表法求出答案;(2)算出甲乙獲勝的概率,從而求出乙勝一次的得分.【詳解】(1)列表如下:由列表可得:P(數字之和為5)=,(2)因為P(甲勝)=,P(乙勝)=,∴甲勝一次得12分,要使這個游戲對雙方公平,乙勝一次得分應為:12÷3=4分.【點睛】本題考查概率問題中的公平性問題,解決本題的關鍵是計算出各種情況的概率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論