




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一列動車從A地開往B地,一列普通列車從B地開往A地,兩車同時出發,設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),如圖中的折線表示y與x之間的函數關系.下列敘述錯誤的是()A.AB兩地相距1000千米B.兩車出發后3小時相遇C.動車的速度為D.普通列車行駛t小時后,動車到達終點B地,此時普通列車還需行駛千米到達A地2.下列各式中,計算正確的是()A. B.C. D.3.已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數是()A.30° B.60° C.30°或150° D.60°或120°4.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.85.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數是()A.75° B.60° C.45° D.30°6.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據圖1、圖2、圖3的數據,判斷三人行進路線長度的大小關系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲8.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm29.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間10.函數y=和y=在第一象限內的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點B.給出如下結論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發生變化;④CA=AP.其中所有正確結論的序號是()A.①②③ B.②③④ C.①③④ D.①②④二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.12.分式方程-1=的解是x=________.13.在臨桂新區建設中,需要修一段全長2400m的道路,為了盡量減少施工對縣城交通工具所造成的影響,實際工作效率比原計劃提高了20%,結果提前8天完成任務,求原計劃每天修路的長度.若設原計劃每天修路xm,則根據題意可得方程.14.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.15.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.16.如圖,在?ABCD中,E、F分別是AB、DC邊上的點,AF與DE相交于點P,BF與CE相交于點Q,若S△APD=16cm1,S△BQC=15cm1,則圖中陰影部分的面積為_____cm1.17.關于的一元二次方程有兩個不相等的實數根,請你寫出一個滿足條件的值__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.19.(5分)為了落實國務院的指示精神,某地方政府出臺了一系列“三農”優惠政策,使農民收入大幅度增加.某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為w元.求w與x之間的函數關系式.該產品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?如果物價部門規定這種產品的銷售價不高于每千克28元,該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?20.(8分)如圖,直線y=﹣x+2與反比例函數(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.(1)求a,b的值及反比例函數的解析式;(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.21.(10分)已知:如圖,在矩形ABCD中,點E,F分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.22.(10分)我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.平均分(分)中位數(分)眾數(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據圖示計算出a、b、c的值;結合兩隊成績的平均數和中位數進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩定.23.(12分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖24.(14分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
可以用物理的思維來解決這道題.【詳解】未出發時,x=0,y=1000,所以兩地相距1000千米,所以A選項正確;y=0時兩車相遇,x=3,所以B選項正確;設動車速度為V1,普車速度為V2,則3(V1+V2)=1000,所以C選項錯誤;D選項正確.【點睛】理解轉折點的含義是解決這一類題的關鍵.2、C【解析】
接利用合并同類項法則以及積的乘方運算法則、同底數冪的乘除運算法則分別計算得出答案.【詳解】A、無法計算,故此選項錯誤;B、a2?a3=a5,故此選項錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項錯誤.故選C.【點睛】此題主要考查了合并同類項以及積的乘方運算、同底數冪的乘除運算,正確掌握相關運算法則是解題關鍵.3、D【解析】【分析】由圖可知,OA=10,OD=1.根據特殊角的三角函數值求出∠AOB的度數,再根據圓周定理求出∠C的度數,再根據圓內接四邊形的性質求出∠E的度數即可.【詳解】由圖可知,OA=10,OD=1,在Rt△OAD中,∵OA=10,OD=1,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所對的圓周角的度數是60°或120°,故選D.【點睛】本題考查了圓周角定理、圓內接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.4、A【解析】
解:連接OA,OC,過點O作OD⊥AC于點D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.5、C【解析】
根據直角三角形兩銳角互余即可解決問題.【詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數=90°﹣45°=45°,故選C.【點睛】本題考查直角三角形的性質,記住直角三角形兩銳角互余是解題的關鍵.6、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.7、A【解析】分析:由角的度數可以知道2、3中的兩個三角形的對應邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質,解答本題的關鍵是利用相似三角形的平移,求得線段的關系.8、C【解析】
已知對角線的長度,根據菱形的面積計算公式即可計算菱形的面積.【詳解】根據對角線的長可以求得菱形的面積,根據S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關鍵.9、C【解析】分析:根據被開方數越大算術平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數的大小,利用被開方數越大算術平方根越大得出1<<5是解題的關鍵,又利用了不等式的性質.10、C【解析】解:∵A、B是反比函數上的點,∴S△OBD=S△OAC=,故①正確;當P的橫縱坐標相等時PA=PB,故②錯誤;∵P是的圖象上一動點,∴S矩形PDOC=4,∴S四邊形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正確;連接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正確;綜上所述,正確的結論有①③④.故選C.點睛:本題考查的是反比例函數綜合題,熟知反比例函數中系數k的幾何意義是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、110【解析】試題解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質、三角形外角的性質點評:本題主要考查了等腰三角形的性質、三角形外角的性質.等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內角之和.12、-5【解析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【點睛】本題考查了解分式方程,解題的關鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.13、.【解析】試題解析:∵原計劃用的時間為:實際用的時間為:∴可列方程為:故答案為14、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理15、30【解析】試題分析:根據直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質16、41【解析】試題分析:如圖,連接EF∵△ADF與△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴陰影部分的面積為S△EPF+S△EFQ=16+15=41cm1.考點:1、三角形面積,1、平行四邊形17、1【解析】
先根據根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數的關系是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;(2)A1(0,1),點B1(﹣2,2).(3)【解析】
(1)按要求作圖.(2)由(1)得出坐標.(3)由圖觀察得到,再根據勾股定理得到長度.【詳解】解:(1)畫出△A1OB1,如圖.(2)點A1(0,1),點B1(﹣2,2).(3)OB1=OB==2.【點睛】本題主要考查的是繪圖、識圖、勾股定理等知識點,熟練掌握方法是本題的解題關鍵.19、(1);(2)該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元;(3)該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.【解析】
(1)根據銷售額=銷售量×銷售價單x,列出函數關系式.(2)用配方法將(2)的函數關系式變形,利用二次函數的性質求最大值.(3)把y=150代入(2)的函數關系式中,解一元二次方程求x,根據x的取值范圍求x的值.【詳解】解:(1)由題意得:,∴w與x的函數關系式為:.(2),∵﹣2<0,∴當x=30時,w有最大值.w最大值為2.答:該產品銷售價定為每千克30元時,每天銷售利潤最大,最大銷售利潤2元.(3)當w=150時,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應舍去.答:該農戶想要每天獲得150元的銷售利潤,銷售價應定為每千克25元.20、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】
(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數法求出反比例函數解析式;(2)設出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結論;(3)設出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結論.【詳解】(1)∵直線y=-x+2與反比例函數y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數y=上,∴k=-1×3=-3,∴反比例函數解析式為y=;(2)設點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數綜合題,主要考查了待定系數法,三角形的面積的求法,等腰三角形的性質,用方程的思想解決問題是解本題的關鍵.21、證明見解析.【解析】試題分析:根據矩形的性質得出求出根據平行四邊形的判定得出四邊形是平行四邊形,即可得出答案.試題解析:∵四邊形ABCD是矩形,∴∴∴四邊形是平行四邊形,點睛:平行四邊形的判定:有一組對邊平行且相等的四邊形是平行四邊形.22、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊選手成績比較穩定.【解析】
分析:(1)根據成績表,結合平均數、眾數、中位數的計算方法進行解答;(2)比較初中部、高中部的平均數和中位數,結合比較結果得出結論;(3)利用方差的計算公式,求出初中部的方差,結合方差的意義判斷哪個代表隊選手的成績較為穩定.【詳解】詳解:(1)初中5名選手的平均分,眾數b=85,高中5名選手的成績是:70,75,80,100,100,故中位數c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊選手成績比較穩定.【點睛】本題是一道有關條形統計圖、平均數、眾數、中位數、方差的統計類題目,掌握平均數、眾數、中位數、方差的概念及計算方法是解題的關鍵.23、見解析【解析】分析:(1)根據求出點的坐標,用待定系數法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當時,則P1(,2),當時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標為(,2)或(,5).(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 60335-2-97:2023 EXV-CMV EN Household and similar electrical appliances - Safety - Part 2-97: Particular requirements for drives for shutters,awnings,blinds and similar
- 【正版授權】 ISO/IEC 9594-5:2020/AMD1:2025 EN Information technology - Open systems interconnection - Part 5: The Directory: Protocol specifications - Amendment 1: Miscellaneous enhancem
- 物流運輸成本控制表格
- 制造業表格:產品分類表
- 印度入學考試試題及答案
- 醫院出納考試試題及答案
- 醫用設備考試試題及答案
- 六一兒童節禮服活動方案
- 六一圍棋活動方案
- 六一異地活動方案
- 2025年江西報業傳媒集團招聘題庫帶答案分析
- 公司退貨流程管理制度
- 東南亞藝術概論智慧樹知到答案章節測試2023年云南藝術學院
- (完整版)食品安全自查、從業人員健康管理、進貨查驗記錄、食品安全事故處置保證食品安全規章制度
- 《霸王茶姬》認證考核試題附答案
- 集裝箱冷板式液冷數據中心技術規范
- GB/T 7106-2019建筑外門窗氣密、水密、抗風壓性能檢測方法
- GB/T 28046.4-2011道路車輛電氣及電子設備的環境條件和試驗第4部分:氣候負荷
- (精心整理)考試作文格紙
- 倉庫管理員培訓教材課件
- (新版)供電可靠性理論考試題庫大全-上(單選、多選題)
評論
0/150
提交評論