




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形2.若△÷,則“△”可能是()A. B. C. D.3.如圖,網格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.4.下列運算結果正確的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a5.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.46.小帶和小路兩個人開車從A城出發勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數關系如圖所示.有下列結論;①A,B兩城相距300km;②小路的車比小帶的車晚出發1h,卻早到1h;③小路的車出發后2.5h追上小帶的車;④當小帶和小路的車相距50km時,t=或t=.其中正確的結論有()A.①②③④ B.①②④C.①② D.②③④7.2017年,小欖鎮GDP總量約31600000000元,數據31600000000科學記數法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10118.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.9.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.10.近似數精確到()A.十分位 B.個位 C.十位 D.百位11.下列運算結果正確的是()A.a3+a4=a7 B.a4÷a3=a C.a3?a2=2a3 D.(a3)3=a612.關于x的正比例函數,y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知A(0,3),B(2,3)是拋物線上兩點,該拋物線的頂點坐標是_________.14.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.15.已知,在同一平面內,∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點E,那么∠AEB的度數為__________.16.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發現還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數關系如圖所示.已知小剛從家出發7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發5分鐘時乘上公交車;③小剛下公交車后跑向學校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.17.袋中裝有紅、綠各一個小球,隨機摸出1個小球后放回,再隨機摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.18.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?20.(6分)中央電視臺的“朗讀者”節目激發了同學們的讀書熱情,為了引導學生“多讀書,讀好書“,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發現,學生課外閱讀的本書最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如圖所示:本數(本)頻數(人數)頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機調查中抽樣人數為50人課外閱讀量為6本的同學為18人,因此這個人數對應的頻率就是=0.1.(1)統計表中的a、b、c的值;(2)請將頻數分布表直方圖補充完整;(3)求所有被調查學生課外閱讀的平均本數;(4)若該校八年級共有600名學生,你認為根據以上調查結果可以估算分析該校八年級學生課外閱讀量為7本和8本的總人數為多少嗎?請寫出你的計算過程.21.(6分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當動點M、N在移動的過程中,線段EF的長度是否發生變化?若變化,說明變化規律.若不變,求出線段EF的長度.22.(8分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.23.(8分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發,結果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?24.(10分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸的正半軸上,OA=6,點B在直線y=34x上,直線l:y=kx+92與折線AB-BC有公共點.點B的坐標是;若直線l經過點B,求直線l的解析式;對于一次函數y=kx+9225.(10分)計算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.26.(12分)某商場以每件30元的價格購進一種商品,試銷中發現這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數關系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數關系式.商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.27.(12分)某企業信息部進行市場調研發現:信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數關系式;(2)從所學過的一次函數、二次函數、反比例函數中確定哪種函數能表示yA與x之間的關系,并求出yA與x的函數關系式;(3)如果企業同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質2、A【解析】
直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關鍵.3、B【解析】
以OM為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.4、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.5、D【解析】
①根據作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結論是:①②③④,,共有4個.故選D.6、C【解析】
觀察圖象可判斷①②,由圖象所給數據可求得小帶、小路兩車離開A城的距離y與時間t的關系式,可求得兩函數圖象的交點,可判斷③,再令兩函數解析式的差為50,可求得t,可判斷④,可得出答案.【詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發1h后出發的,且用時3h,即比小帶早到1h,∴①②都正確;設小帶車離開A城的距離y與t的關系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設小路車離開A城的距離y與t的關系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標為t=2.5,此時小路出發時間為1.5h,即小路車出發1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當100-40t=50時,可解得t=,當100-40t=-50時,可解得t=,又當t=時,y小帶=50,此時小路還沒出發,當t=時,小路到達B城,y小帶=250.綜上可知當t的值為或或或時,兩車相距50km,∴④不正確.故選C.【點睛】本題主要考查一次函數的應用,掌握一次函數圖象的意義是解題的關鍵,特別注意t是甲車所用的時間.7、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】31600000000=3.16×1.故選:C.【點睛】本題考查科學記數法,解題的關鍵是掌握科學記數法的表示.8、A【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、B【解析】
連接BF,由折疊可知AE垂直平分BF,根據勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.10、C【解析】
根據近似數的精確度:近似數5.0×102精確到十位.故選C.考點:近似數和有效數字11、B【解析】
分別根據同底數冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.12、B【解析】
根據正比例函數定義可得m2-3=1,再根據正比例函數的性質可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點睛】此題主要考查了正比例函數的性質和定義,關鍵是掌握正比例函數y=kx(k≠0)的自變量指數為1,當k<0時,y隨x的增大而減小.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(1,4).【解析】試題分析:把A(0,3),B(2,3)代入拋物線可得b=2,c=3,所以=,即可得該拋物線的頂點坐標是(1,4).考點:拋物線的頂點.14、1【解析】
根據相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.15、65°或25°【解析】
首先根據角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,
∴∠EAD=∠EAB,
∵AD∥BC,
∴∠EAD=∠AEB,
∴∠BAD=∠AEB,
∵∠ABC=50°,
∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,
∴∠EAD=∠EAB=,
∵AD∥BC,
∴∠AEB=∠DAE=,∠DAB=∠ABC,
∵∠ABC=50°,
∴∠AEB=×50°=25°.
故答案為:65°或25°.【點睛】本題考查平行線的性質、角平分線的定義等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.16、①②③【解析】
由公交車在7至12分鐘時間內行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向學校的速度.【詳解】解:公交車7至12分鐘時間內行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數的應用.17、【解析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.18、40°.【解析】
∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=-x+40(10≤x≤16);(2)每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【解析】
根據題可設出一般式,再由圖中數據帶入可得答案,根據題目中的x的取值可得結果.②由總利潤=數量×單間商品的利潤可得函數式,可得解析式為一元二次式,配成頂點式可求出最大利潤時的銷售價,即可得出答案.【詳解】(1)y=-x+40(10≤x≤16).(2)根據題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當x<25時,W隨x的增大而增大∵10≤x≤16∴當x=16時,W取得最大值,最大值是144答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】熟悉掌握圖中所給信息以及列方程組是解決本題的關鍵.20、(1)10、0.28、1;(2)見解析;(3)6.4本;(4)264名;【解析】
(1)根據百分比=計算即可;(2)求出a組人數,畫出直方圖即可;(3)根據平均數的定義計算即可;(4)利用樣本估計總體的思想解決問題即可;【詳解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;(2)補全圖形如下:(3)所有被調查學生課外閱讀的平均本數==6.4(本)(4)該校八年級共有600名學生,該校八年級學生課外閱讀7本和8本的總人數有600×=264(名).【點睛】本題考查頻數分布直方圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考常考題型.21、(1)10;(2).【解析】
(1)先證出∠C=∠D=90°,再根據∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據△OCP與△PDA的面積比為1:4,得出CP=AD=4,設OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據ME⊥PQ,得出EQ=PQ,根據∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、勾股定理、等腰三角形的性質,關鍵是做出輔助線,找出全等和相似的三角形22、(1)見解析;(2)①120°;②45°【解析】
(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;
(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【點睛】本題是圓的綜合題目,考查了全等三角形的判定與性質、平行四邊形的判定、切線的性質、菱形的判定與性質、等邊三角形的判定與性質等知識;本題綜合性強,熟練掌握切線的性質和平行四邊形的判定是解題的關鍵.23、自行車速度為16千米/小時,汽車速度為40千米/小時.【解析】
設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,根據甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發,結果同時到達,即可列方程求解.【詳解】設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,由題意得,解得x=16,經檢驗x=16適合題意,2.5x=40,答:自行車速度為16千米/小時,汽車速度為40千米/小時.24、(1)(8,6);(2)y=316【解析】
(1)OA=6,即BC=6,代入y=3(2)將點B的坐標代入直線l中求出k即可得出解析式(3)一次函數y=kx+92(k≠0),必經過0,【詳解】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵點B在直線y=3∴6=3故點B的坐標為(8,6)故答案為(8,6)(2)把點B8,6的坐標代入y=kx+92解得:k=∴y=(3))∵一次函數y=kx+92(k≠0)∴y值為0?y?∴代入y=kx+9解得-9【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東莞洗碗機項目商業計劃書參考模板
- 店鋪合作協議書合同
- 雙峰文化旅游發展規劃方案
- 從夢想到現實一位大學生的新能源汽車創業歷程
- 2025年試劑氫氧化鈉市場分析現狀
- 2025年高考復習專項練習一輪生物課時規范練44生物技術的安全性和
- 廣告橫幅合同協議書
- 餐飲店的商業計劃書
- 合同協議書范本格式合作
- 中國硫酸鈷項目投資計劃書
- 通信企業協會網絡安全人員能力認證考試復習題庫(含答案)
- 化學家門捷列夫課件
- 小學一年級體育教案全集
- 2024年新人教版七年級數學下冊期末考試數學試卷-含答案
- 運動健康管理智慧樹知到答案2024年上海師范大學
- 2024年廣東省預防接種技能競賽理論考試題庫(含答案)
- GB/T 4706.24-2024家用和類似用途電器的安全第24部分:洗衣機的特殊要求
- DLT 1529-2016 配電自動化終端設備檢測規程
- 2018年四川省中職學校技能大賽建筑CAD賽項 樣題
- 2024年人工智能訓練師(初級)職業鑒定理論考試題庫及答案
- 山東省青島市嶗山區2023-2024學年七年級下學期期末數學試題
評論
0/150
提交評論