2023屆湖南省邵陽市城區市級名校中考二模數學試題含解析_第1頁
2023屆湖南省邵陽市城區市級名校中考二模數學試題含解析_第2頁
2023屆湖南省邵陽市城區市級名校中考二模數學試題含解析_第3頁
2023屆湖南省邵陽市城區市級名校中考二模數學試題含解析_第4頁
2023屆湖南省邵陽市城區市級名校中考二模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如表記錄了甲、乙、丙、丁四名跳高運動員最近幾次選拔賽成績的平均數與方差:甲乙丙丁平均數(cm)185180185180方差3.63.67.48.1根據表數據,從中選擇一名成績好且發揮穩定的參加比賽,應該選擇()A.甲 B.乙 C.丙 D.丁2.方程有兩個實數根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<13.已知關于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣34.矩形ABCD的頂點坐標分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)5.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.如圖,是某幾何體的三視圖及相關數據,則該幾何體的側面積是()A.10π B.15π C.20π D.30π7.如圖,為的直徑,為上兩點,若,則的大小為().A.60° B.50° C.40° D.20°8.方程(m–2)x2+3mx+1=0是關于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠29.今年我市計劃擴大城區綠地面積,現有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160010.已知等邊三角形的內切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:3二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a).如圖,若曲線與此正方形的邊有交點,則a的取值范圍是________.12.已知一組數據1,2,0,﹣1,x,1的平均數是1,則這組數據的中位數為_____.13.若式子在實數范圍內有意義,則x的取值范圍是.14.滿足的整數x的值是_____.15.如圖,在平行四邊形紙片上做隨機扎針實驗,則針頭扎在陰影區域的概率為__________.16.一名模型賽車手遙控一輛賽車,先前進1m,然后,原地逆時針方向旋轉角a(0°<α<180°).被稱為一次操作.若五次操作后,發現賽車回到出發點,則角α為三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數.18.(8分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長.19.(8分).在一個不透明的布袋中裝有三個小球,小球上分別標有數字﹣1、0、2,它們除了數字不同外,其他都完全相同.隨機地從布袋中摸出一個小球,則摸出的球為標有數字2的小球的概率為;小麗先從布袋中隨機摸出一個小球,記下數字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網格內(包括邊界)的概率.20.(8分)已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.21.(8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.22.(10分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.23.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).24.在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

首先比較平均數,平均數相同時選擇方差較小的運動員參加.【詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【點睛】此題主要考查了平均數和方差的應用,解題關鍵是明確平均數越高,成績越高,方差越小,成績越穩定.2、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.3、B【解析】

把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.4、B【解析】

由矩形的性質可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標.【詳解】解:∵四邊形ABCD是矩形

∴AB∥CD,AB=CD,AD=BC,AD∥BC,

∵A(1,4)、B(1,1)、C(5,1),

∴AB∥CD∥y軸,AD∥BC∥x軸

∴點D坐標為(5,4)

故選B.【點睛】本題考查了矩形的性質,坐標與圖形性質,關鍵是熟練掌握這些性質.5、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、B【解析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,∵圓錐的底面周長等于圓錐的側面展開扇形的弧長,∴圓錐的底面周長=圓錐的側面展開扇形的弧長=2πr=2π×3=6π,∴圓錐的側面積=lr=×6π×5=15π,故選B7、B【解析】

根據題意連接AD,再根據同弧的圓周角相等,即可計算的的大小.【詳解】解:連接,∵為的直徑,∴.∵,∴,∴.故選:B.【點睛】本題主要考查圓弧的性質,同弧的圓周角相等,這是考試的重點,應當熟練掌握.8、D【解析】試題分析:根據一元二次方程的概念,可知m-2≠0,解得m≠2.故選D9、A【解析】試題分析:根據題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據長方形的面積計算法則列出方程.考點:一元二次方程的應用.10、D【解析】試題分析:圖中內切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1≤a≤【解析】

根據題意得出C點的坐標(a-1,a-1),然后分別把A、C的坐標代入求得a的值,即可求得a的取值范圍.【詳解】解:反比例函數經過點A和點C.當反比例函數經過點A時,即=3,解得:a=±(負根舍去);當反比例函數經過點C時,即=3,解得:a=1±(負根舍去),則-1≤a≤.故答案為:-1≤a≤.【點睛】本題考查的是反比例函數圖象上點的坐標特點,關鍵是掌握反比例函數y=(k為常數,k≠0)的圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.12、2【解析】

解:這組數據的平均數為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數據從小到大重新排列后,觀察數據可知最中間的兩個數是2與2,

其平均數即中位數是(2+2)÷2=2.

故答案是:2.13、.【解析】

根據二次根式被開方數必須是非負數的條件,要使在實數范圍內有意義,必須.故答案為14、3,1【解析】

直接得出2<<3,1<<5,進而得出答案.【詳解】解:∵2<<3,1<<5,∴的整數x的值是:3,1.故答案為:3,1.【點睛】此題主要考查了估算無理數的大小,正確得出接近的有理數是解題關鍵.15、【解析】

先根據平行四邊形的性質求出對角線所分的四個三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對角線把平行四邊形分成面積相等的四部分,觀察發現:圖中陰影部分面積=S四邊形,∴針頭扎在陰影區域內的概率為;故答案為:.【點睛】此題主要考查了幾何概率,以及平行四邊形的性質,用到的知識點為:概率=相應的面積與總面積之比.16、72°或144°【解析】

∵五次操作后,發現賽車回到出發點,∴正好走了一個正五邊形,因為原地逆時針方向旋轉角a(0°<α<180°),那么朝左和朝右就是兩個不同的結論所以∴角α=(5-2)?180°÷5=108°,則180°-108°=72°或者角α=(5-2)?180°÷5=108°,180°-72°÷2=144°三、解答題(共8題,共72分)17、(1)見解析;(2)40°.【解析】

(1)根據角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據等腰三角形的性質結合三角形內角和定理即可求出∠A的度數.【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.18、(1)見解析;(1)OE=1.【解析】

(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結論;

(1)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結論.【詳解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴?ABCD是菱形;(1)∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==1,∴OE=OA=1.【點睛】此題主要考查了菱形的判定和性質,平行四邊形的判定和性質,角平分線的定義,勾股定理,判斷出CD=AD=AB是解本題的關鍵19、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結果總數,摸出標有數字2的小球有1種可能,因此摸出的球為標有數字2的小球的概率為;(2)利用列表得出共有9種等可能的結果數,再找出點M落在如圖所示的正方形網格內(包括邊界)的結果數,可求得結果.試題解析:(1)P(摸出的球為標有數字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結果數,其中點M落在如圖所示的正方形網格內(包括邊界)的結果數為6,∴P(點M落在如圖所示的正方形網格內)==.考點:1列表或樹狀圖求概率;2平面直角坐標系.20、(1)y=-(x-3)2+5(2)5【解析】

(1)設頂點式y=a(x-3)2+5,然后把A點坐標代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標,然后根據三角形面積公式求解.【詳解】(1)設此拋物線的表達式為y=a(x-3)2+5,將點A(1,3)的坐標代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數法求二次函數解析式,二次函數的性質,二次函數圖象上點的坐標特征,掌握待定系數法求二次函數的解析式是解題的關鍵.21、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】

(1)根據反比例函數圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過A(3,),∴.把B(-5,)代入,得.∴點B的坐標是(-5,-4)設直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點D的坐標是(3,0),點C的坐標是(-2,0).∵BE∥軸,∴點E的坐標是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形22、(1)見解析;(2)①120°;②45°【解析】

(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;

(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【點睛】本題是圓的綜合題目,考查了全等三角形的判定與性質、平行四邊形的判定、切線的性質、菱形的判定與性質、等邊三角形的判定與性質等知識;本題綜合性強,熟練掌握切線的性質和平行四邊形的判定是解題的關鍵.23、(1)見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論