2023屆河北省秦皇島市青龍滿族自治縣達標名校中考數學考試模擬沖刺卷含解析_第1頁
2023屆河北省秦皇島市青龍滿族自治縣達標名校中考數學考試模擬沖刺卷含解析_第2頁
2023屆河北省秦皇島市青龍滿族自治縣達標名校中考數學考試模擬沖刺卷含解析_第3頁
2023屆河北省秦皇島市青龍滿族自治縣達標名校中考數學考試模擬沖刺卷含解析_第4頁
2023屆河北省秦皇島市青龍滿族自治縣達標名校中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一個布袋內只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.2.下列命題正確的是()A.內錯角相等B.-1是無理數C.1的立方根是±1D.兩角及一邊對應相等的兩個三角形全等3.為了紀念物理學家費米,物理學界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數用科學記數法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣124.如圖,邊長為1的小正方形構成的網格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.5.二次函數y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.96.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數()A.40° B.50° C.60° D.90°7.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.218.下列圖形不是正方體展開圖的是()A. B.C. D.9.計算的結果等于()A.-5 B.5 C. D.10.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體二、填空題(本大題共6個小題,每小題3分,共18分)11.《九章算術》是我國古代數學名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是______步.12.分解因式:8a3﹣8a2+2a=_____.13.如圖,已知一次函數y=ax+b和反比例函數的圖象相交于A(﹣2,y1)、B(1,y2)兩點,則不等式ax+b<的解集為__________14.如圖,在直角坐標平面xOy中,點A坐標為,,,AB與x軸交于點C,那么AC:BC的值為______.15.一個不透明的袋中裝有除顏色外均相同的8個黑球、4個白球和若干個紅球.每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復摸球試驗后,發現摸到紅球的頻率穩定于0.4,由此可估計袋中約有紅球_____個.16.如圖,點A、B、C是⊙O上的點,且∠ACB=40°,陰影部分的面積為2π,則此扇形的半徑為______.三、解答題(共8題,共72分)17.(8分)計算:﹣4cos45°+()﹣1+|﹣2|.18.(8分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數.19.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.20.(8分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.21.(8分)現有兩個紙箱,每個紙箱內各裝有4個材質、大小都相同的乒乓球,其中一個紙箱內4個小球上分別寫有1、2、3、4這4個數,另一個紙箱內4個小球上分別寫有5、6、7、8這4個數,甲、乙兩人商定了一個游戲,規則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得1分,若得到積是3的倍數,則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數和3的倍數的概率;(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規則,使游戲對雙方公平.22.(10分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.23.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.24.如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結果有9種,兩次摸出的球都是黑球的結果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.2、D【解析】解:A.兩直線平行,內錯角相等,故A錯誤;B.-1是有理數,故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應相等的兩個三角形全等,正確.故選D.3、A【解析】

根據科學記數法的表示方法解答.【詳解】解:把這個數用科學記數法表示為.故選:.【點睛】此題重點考查學生對科學記數法的應用,熟練掌握小于0的數用科學記數法表示法是解題的關鍵.4、D【解析】

根據同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結合圖形根據正切的定義進行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關鍵.5、D【解析】

直接利用配方法得出二次函數的頂點式進而得出答案.【詳解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函數y=﹣x2﹣4x+5的最大值是9,故選D.【點睛】此題主要考查了二次函數的最值,正確配方是解題關鍵.6、B【解析】分析:根據“平行線的性質、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質、平角的定義和垂直的定義”是正確解答本題的關鍵.7、A【解析】

根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.8、B【解析】

由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.9、A【解析】

根據有理數的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數的除法,解題的關鍵是掌握有理數的除法法則:兩數相除,同號得正,異號得負,并把絕對值相除.10、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

如圖,根據正方形的性質得:DE∥BC,則△ADE∽△ACB,列比例式可得結論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點睛】本題考查了相似三角形的判定和性質、正方形的性質,設未知數,構建方程是解題的關鍵.12、2a(2a﹣1)2【解析】

提取2a,再將剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【詳解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【點睛】本題考查了因式分解,仔細觀察題目并提取公因式是解決本題的關鍵.13、﹣2<x<0或x>1【解析】

根據一次函數圖象與反比例函數圖象的上下位置關系結合交點坐標,即可得出不等式的解集.【詳解】觀察函數圖象,發現:當﹣2<x<0或x>1時,一次函數圖象在反比例函數圖象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.【點睛】本題主要考查一次函數圖象與反比例函數圖象,數形結合思想是關鍵.14、【解析】

過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.15、8【解析】試題分析:設紅球有x個,根據概率公式可得,解得:x=8.考點:概率.16、3【解析】

根據圓周角定理可求出∠AOB的度數,設扇形半徑為x,從而列出關于x的方程,求出答案.【詳解】由題意可知:∠AOB=2∠ACB=2×40°=80°,設扇形半徑為x,故陰影部分的面積為πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合題意,舍去),故答案為3.【點睛】本題主要考查了圓周角定理以及扇形的面積求解,解本題的要點在于根據題意列出關于x的方程,從而得到答案.三、解答題(共8題,共72分)17、4【解析】分析:代入45°角的余弦函數值,結合“負整數指數冪的意義”和“二次根式的相關運算法則”進行計算即可.詳解:原式=.點睛:熟記“特殊角的三角函數值、負整數指數冪的意義:(為正整數)”是正確解答本題的關鍵.18、(1)證明見解析;(2).【解析】試題分析:(1)根據等邊三角形的性質根據SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內角的關系就可以得出結論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.19、(1)答案見解析;(2).【解析】試題分析:(1)連接OD,AB為⊙O的直徑得∠ADB=90°,由AB=AC,根據等腰三角形性質得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據切線的判定方法即可得到結論;(2)由∠DAC=∠DAB,根據等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△ADE中可計算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可計算出BF.試題解析:(1)證明:連結OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB=∠C∴OD∥AC又DE⊥AC∴DE⊥OD∴EF是⊙O的切線.(2)∵AB是直徑∴∠ADB=90°∴∠ADC=90°即∠1+∠2=90°又∠C+∠2=90°∴∠1=∠C∴∠1=∠3∴∴∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,∴設BF=x∵OD∥AE∴△ODF∽△AEF∴,即,解得:x=20、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】

(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.21、(1)34(2)游戲不公平,修改得分規則為:把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得7分,若得到的積是3的倍數,則乙得12分【解析】試題分析:(1)列表如下:共有16種情況,且每種情況出現的可能性相同,其中,乘積是2的倍數的有12種,乘積是3的倍數的有7種.∴P(兩數乘積是2的倍數)=P(兩數乘積是3的倍數)=(2)游戲不公平,修改得分規則為:把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得7分,若得到的積是3的倍數,則乙得12分考點:概率的計算點評:題目難度不大,考查基本概率的計算,屬于基礎題。本題主要是第二問有點難度,對游戲規則的確定,需要一概率為基礎。22、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】

(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達式,根據二次函數最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.23、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數的性質解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論