




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter4
CombinationalLogicDesignPrinciplesLogicCircuitsCombinationallogiccircuitOutputsdependonlyonitscurrentinputsNofeedbackloopSequentiallogiccircuitOutputsdependonitscurrentinputsandpresentstatesFeedbackloopContentsSwitchingAlgebraAxiomsandTheoremsCombinational-CircuitAnalysisCombinational-CircuitSynthesisCombinational-CircuitMinimizationKarnaughMapsTimingHazards4.1SwitchingAlgebraBooleanAlgebra-formulatedbymathematicianGeorgeBoolein1854-basicrelationships&manipulationsforatwo-valuesystemSwitchingAlgebra-
adaptationofBooleanLogictoanalyzeranddescribebehaviorofrelays-ClaudeShannonofBellLabsin1938-thisworksforallswitches(mechanicalorelectrical)-wegenerallyusetheterms"BooleanAlgebra"&"SwitchingAlgebra"interchangeablyBooleanAlgebraWhatisAlgebra
-thebasicsetofrulesthattheelementsandoperatorsinasystemfollow
-theabilitytorepresentunknownsusingvariables
-thesetoftheoremsavailabletomanipulateexpressionsBoolean
-welimitournumbersettotwovalues(0,1)
-welimitouroperatorstoAND,OR,INVAxioms(公理)Axioms
-alsocalled"Postulates"
-minimalsetofbasicdefinitionsthatweassumetobetrue
-allotherderivationsarebasedonthesetruths
-sinceweonlyhavetwovaluesinoursystem,wetypicallydefineanaxiomandthenitscomplement(A1&A1')AxiomsAxiom#1"Identity"
-avariableXcanonlytakeon1or2values(0or1)
(A1)X=0,ifX≠1 (A1')X=1,ifX≠0
Axiom#2"Complement"
-aprimefollowingavariabledenotesaninversionfunction
(A2)ifX=0,thenX'=1 (A2')ifX=1,thenX'=0AxiomsAxiom#3"AND"
-alsocalled"LogicalMultiplication"
-adot(·)isusedtorepresentanANDfunction
(A3)0·0=0 (A3')1+1=1Axiom#4"OR"
-alsocalled"LogicalAddition"
-aplus(+)isusedtorepresentanORfunction
(A4)1·1=1 (A4')0+0=0
AxiomsAxiom#5"Precedence"
-multiplicationprecedesaddition (A5)0·1=1·0=0 (A5')0+1=1+0=1
Try F=0+1·(0+1·0’)’=? =0+1·1’=0TheoremsTheoremsuseourAxiomstoformulatemoremeaningfulrelationships&manipulationsatheoremisastatementofTRUTHthesetheoremscanbeprovedusingourAxiomswecanprovemosttheoremsusing“PerfectInduction“(完全歸納法)Single-VariableTheorems"Identity"(自等律)
X+0=X X·1=X"NullElement"(0-1律)
X+1=1 X·0=0"Involution"(還原律)
(X')'=X
"Idempotency"(同一律)
X+X=X X·X=X
"Complements"(互補律)
X+X'=1 X·X'=0VariablewithConstantVariablewithVariableMulti-VariableTheorems"Commutative"(交換律)
X+Y=Y+X X·Y=Y·X“Associative”(結合律) (X+Y)+Z=X+(Y+Z) (X·Y)·Z=X·(Y·Z)
“Distributive”(分配律) X·(Y+Z)=X·Y+X·Z (X+Y)·(X+Z)=X+Y·Z
likeordinaryalgebraProofsbyexhaustion: Letvariablesassumeallpossiblevaluesandshowvalidityofresultinallcases-usingtruthtableValidatetheoremsusingtruthtableX+YZ=(X+Y)(X+Z)XYZYZX+YX+ZG(X,Y,Z)0000010100111001011101110100000000000000011111111111111111111111F(X,Y,Z)NotesNOindexofvariable X·X·XX3NOdivision
ifXY=YZX=Z??NOsubtraction
ifX+Y=X+ZY=Z??X=1,Y=0,Z=0XY=XZ=0,XZX=1,Y=0,Z=1Wrong!Wrong!Multi-VariableTheorems“Covering”
(吸收律)
X+X·Y=X X·(X+Y)=X“Combining”
(組合律)
X·Y+X·Y'=X (X+Y)·(X+Y')=X“Consensus”
(一致性定律) X·Y+X'·Z+Y·Z=X·Y+X'·Z (X+Y)·(X'+Z)·(Y+Z)=(X+Y)·(X'+Z)Prove:X·Y+X’·Z+Y·Z=X·Y+X’·ZY·Z=
1·Y·Z
=
(X+X’)·Y·ZX·Y+X’·Z+(X+X’)·Y·Z=X·Y+X’·Z+X·Y·Z+X’·Y·Z=X·Y·(1+Z)+X’·Z·(1+Y)=X·Y+X’·ZProveConsensus(X+Y)+(X+Y)’=1X+X’=1X·Y+X·Y’=X(X’+Y)·(X·(Y’+Z))+(X’+Y)·(X·(Y’+Z))’=(X’+Y)SubstitutionTheorems
(代入定理):
AnytheoremoridentitywithvariableXinswitchingalgebraremainstrueifsubstitutingallXwithanothervariableorlogicexpression.
Rememberallabovetheorems,andwecangetmoreusefulformulasbyanalogyTheorem-XOR
(異或)Commutative:XY=YXAssociative:X(YZ)=(XY)ZDistributive:X·(YZ)=(X·Y)(X·Z)
因果互換關系
XY=ZXZ=YYZ=XXYZW=00XYZ=WTheorem-XOR
(異或)VariableandConstant---
XX=0XX’=1X0=XX1=X’Multi-variable---——theresultdependsonthetotalnumberof“1”X0X1…Xn=
1變量為1的個數是奇數0變量為1的個數是偶數Theorem-XNOR
(同或)Commutative:X⊙Y=Y⊙X
Associative:X⊙(Y⊙Z)=(X⊙Y)⊙ZNODistributive:X(Y⊙Z)≠XY⊙XZ因果互換關系
X⊙Y=ZX⊙Z=YY⊙Z=XTheorem-XNOR
(同或)VariableandConstant---X⊙X=1X⊙X’=0X⊙1=XX⊙0=X’Multi-variable---——theresultdependsonthetotalnumberof“0”X0⊙X1⊙…⊙Xn=
1變量為0的個數是偶數0變量為0的個數是奇數XORvs.XNORAB’=A⊙BAB=A⊙B’AB’=A’BA’⊙B=A⊙B’Evenvariables’XORandXNOR---opposite
XY=(X⊙Y)’XYZW=(X⊙Y⊙Z⊙W)’Oddvariables’XORandXNOR---equal
XYZ=X⊙Y⊙Zn-VariableTheoremsGeneralizedidempotency
(廣義同一律)X+X+…+X=XX·X·…·X=XShannon’sexpansiontheorems
(香農展開定理)香農展開定理主要用于證明等式或展開函數將函數展開一次可以使函數內部的變量數從n個減少到n-1個Prove:X·W+X’·Z+Z·W+X·Y’·Z·W=X·W+X’·ZX·W+X’·Z+Z·W+X·Y’·Z·W=X·(
1·W+1’·Z+Z·W+1·Y’·Z·W)+ X’·(0·W+0’·Z+Z·W+0·Y’·Z·W)=X·(W+Z·W+Y’·Z·W)+X’·(Z+Z·W)=X·W·(1+Z+Y’·Z)+X’·Z·(1+W)=X·W+X’·ZApplicationofShannon’sexpansiontheoremsn-VariableTheoremsDeMorgan’sTheorems
(摩根定律)——complementofalogicexpression(X·Y)’=X’+Y’(X+Y)’=X’·Y’反演定理Complementofalogicexpression(反演規則)
:ANDOR,01,complementingallvariablesKeeptheoperationorderoftheoriginalfunction(保持運算優先級)DoNOTchangetheprime(’)overmulti-variables(不屬于單個變量上的反號應保留不變)Ex1:PerformthecomplementexpressionsF1=X·(Y+Z)+Z·WF2=(X·Y)’+Z·W·E’F1’=(X’+Y’Z’)(Z’+W’)=X’Z’+X’W’+Y’Z’+Y’Z’W’=X’Z’+X’W’+Y’Z’F2’=(X’+Y’)’(Z’+W’+E)Prove:(XY+X’Z)’XY+X’Z+YZ=XY+X’Z=(X’+Y’)(X+Z’)=X’X+X’Z’+XY’+Y’Z’=X’Z’+XY’
=X’Z’+XY’+Y’Z’Ex2:Prove(X·Y+X’·Z)’=X·Y’+X’·Z’DualityTheorems(對偶定理)
DualofalogicexpressionFD(X1,X2,…,Xn,+,·,’)=F(X1,X2,…,Xn,·,+,’)ANDOR;01Keeptheoperationorderoftheoriginalfunction
PrincipleofDualityIfalogicequationistrue,thenitsdualityremainstrue.
X+X·Y=XX·X+Y=XX+Y=XX·(X+Y)=XWrong!ApplicationofdualityProve:X+YZ=(X+Y)(X+Z)X(Y+Z)XY+XZEx:Performthedualities.F1=X+Y·(Z+W)F2=(X’·(Y+Z’)+(Z+W)’)’F1D=X·(Y+Z·W)F2D=(X’+Y·Z’)·(Z·W)’)’Complementvs.DualityDuality:FD(X1,X2,…,Xn,+,·,’)=F(X1,X2,…,Xn,·,+,’)Complement:[F(X1,X2,…,Xn,+,·)]’ =F(X1’
,X2’,…,Xn’
,·,+)[F(X1,X2,…,Xn)]’=FD(X1’
,X2’,…,Xn’
)SourceofDuality:Positive&NegativeLogicsPositive-logicConventionandNegative-logicConventionaredualities.G1XYFXYFLLLLHLHLLHHHfunctiontableXYF000010100111PositiveLogicXYF111101011000NegativeLogicPositive-logic:F=X·YNegative-logic:F=X+YRepresentationsofLogicFunctionsRepresentationsincommonuse:TruthTableLogicExpressionLogicCircuitTimingdiagram(Waveform)F=F(X,Y,Z)=X·(Y+Z)XYFZ&≥1XYZFLogicexpressionLogiccircuitSwitch:XYZ1-ONLampF:1-ON00000111000001010011100101110111XYZFTruthtable舉重裁判電路Reallogiccircuitsfunctionhasanotherveryimportantanalogdimension–time.00000111000001010011100101110111ABCFTruthtableTimediagram(Waveform,波形圖)TruthTablesRowWeassigna"RowNumber"foreachentrystartingat0VariablesWeenterallinputcombinationsinascendingorder.FunctionWesaytheoutputisafunctionoftheinputvariablesF(A,B,C)Row ABCF
0 00011 00102 01003 01114 10015 10106 11017 1111FormalDefinitionofTruthTablesn=thenumberofinputvariables2n=thenumberofinputcombinationsTruthTablesLet'salsodefinethefollowingterms---Literal(文字),avariableorthecomplementofavariable ex)A,B,C,A',B',C'ProductTerm(乘積項),asingleliteralorLogicalProductoftwoormoreliterals ex)AA·BB'·CSumorProducts(SOP)(積之和),theLogicalSumofProductTerms ex)A+B A·B+B'·CTruthTablesSumTerm(求和項),asingleliteraloraLogicalSumoftwoormoreliterals ex)A A+B'ProductofSums(POS)(和之積),theLogicalProductofSumTerms ex)(A+B)·(B'+C)ConversionsbetweendifferentrepresentationsLogicexpressionTruthtableLogicexpressionLogiccircuitTruthtable
LogicexpressionLogiccircuit
LogicexpressionLogicexpressionTruthtableF=X+Y’·Z+X’·Y·Z’000001010011100101110111XYZY’·ZX’·Y·Z’F110000000111111000000100“Sum-of-products”“AND-OR”LogicexpressionTruthtableF=(Y’+Z)·(X’+Y+Z’)000001010011100101110111XYZY’+ZX’+Y+Z’F001111111111111111110000“Product-of-sums”“OR-AND”LogicexpressionLogiccircuitF=A+BC+ABC+CABCBCTruthtable
LogicexpressionX’·Y·Z00000010010001111000101111011110XYZFX·Y’·ZX·Y·Z’F=X’·Y·Z+X·Y’·Z+X·Y·Z’“Sum-of-products”“AND-OR”Truthtable
Logicexpression00010011010001111000101111011111XYZFX+Y’+ZX’+Y+ZF=(X+Y’+Z)·(X’+Y+Z)“Product-of-sums”“OR-AND”Logiccircuit
LogicexpressionF=[(A+B)’+(A’+B’)’]’=(A+B)(A’+B’)=AB’+A’B=AB(A’+B’)’(A+B)’ABA’B’StandardRepresentationsofLogicFunctionsWhat’sthestandardrepresentations?NormalTerm(標準項),aterminwhichnovariableappearsmorethanonce ex)"Normal"A·BA+B'
ex)"Non-Normal" A·B·B'A+A'Standardrepresentations
Canonicalsum
(標準和)
Canonicalproduct
(標準積)-Minterm-MaxtermMinterm
(最小項)Minterm——anormalproducttermwithn-literalsthereare2nMintermsforagiventruthtable全體最小項之和為1任意兩個最小項的乘積為0輸入變量的每一組取值都使一個對應的最小項的值為1注意:XY不是最小項X’·Y’·Z’X’·Y’·ZX’·Y·Z’X’·Y·ZX·Y’·Z’X·Y’·ZX·Y·Z’X·Y·Z000001010011100101110111XYZMintermMaxterm
(最大項)Maxterm——anormalsumtermwithn-literalsthereare2nMaxtermsforagiventruthtable全體最大項之積為0任意兩個最大項的和為1輸入變量的每一組取值都使一個對應的最大項的值為0X+Y+ZX+Y+Z’X+Y’+ZX+Y’+Z’X’+Y+ZX’+Y+Z’X’+Y’+ZX’+Y’+Z’000001010011100101110111XYZMaxtermX’·Y’·Z’X’·Y’·ZX’·Y·Z’X’·Y·ZX·Y’·Z’X·Y’·ZX·Y·Z’X·Y·ZMintermm0m1m2m3m4m5m6m700000011010201131004101511061117XYZROWX+Y+ZX+Y+Z’X+Y’+ZX+Y’+Z’X’+Y+ZX’+Y+Z’X’+Y’+ZX’+Y’+Z’M0M1M2M3M4M5M6M7MaxtermStandardRepresentationsofLogicFunctionsStandardrepresentations---Canonicalsum
(標準和) ---Asumofthemintermscorrespondingtotruth-tablerowsforwhichthefunctionproducesa1outputCanonicalproduct
(標準積) ---Aproductofthemaxtermscorrespondingtotruth-tablerowsforwhichthefunctionproducesa0outputStandardRepresentationsofLogicFunctionsCanonicalsumofF
F=X'Y’Z’+X’YZ+XY’Z’+XYZ’+XYZ =∑X,Y,Z(0,3,4,6,7)CanonicalproductofF
F=(X+Y+Z’)(X+Y’+Z)(X’+Y+Z’)
=∏X,Y,Z(1,2,5)On-Set(開集)Off-Set(閉集)Row XYZF
0 00011 00102 01003
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 觀看《榜樣3》的家庭教育反思范文
- 2024年六安市葉集區引進教育人才筆試真題
- 歷史人物祭文的撰寫范文
- 北師大版五年級數學上冊小組合作學習計劃
- 五年級體育下冊教學計劃評比活動
- 船舶運營中的風險識別與預防措施
- 高校學術不端行為的反思心得體會
- 信息技術行業環境風險防控措施
- 金融機構行政辦公室職責分析
- 重癥醫學科設備管理職責
- GB/T 45551-2025蜜蜂生產性能測定技術規范
- 荔枝采摘合同協議書
- 太湖蘇州轄區生態清淤一期工程環境影響報告書
- 精神分裂癥患者個案護理查房
- 2025屆江蘇省蘇州市高考沖刺押題(最后一卷)英語試卷含解析
- 中國共產主義青年團紀律處分條例試行解讀學習
- 三方水泥合同協議
- 江蘇省南通市如皋市八校2025屆初三下學期教育質量調研(二模)化學試題含解析
- 2025至2030年抗應激添加劑項目投資價值分析報告
- 23《“蛟龍”探海》公開課一等獎創新教學設計
- 研學部管理制度
評論
0/150
提交評論