




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年福建省寧德市成考專升本高等數學一自考真題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.A.1
B.3
C.
D.0
2.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號不定
3.
4.
5.
6.設y=cos4x,則dy=()。A.
B.
C.
D.
7.A.I1=I2
B.I1>I2
C.I1<I2
D.無法比較
8.
9.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線10.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
11.設Y=e-5x,則dy=().
A.-5e-5xdx
B.-e-5xdx
C.e-5xdx
D.5e-5xdx
12.設z=ln(x2+y),則等于()。A.
B.
C.
D.
13.設y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx14.A.A.∞B.1C.0D.-1
15.
16.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
17.
18.當a→0時,2x2+3x是x的().A.A.高階無窮小B.等價無窮小C.同階無窮小,但不是等價無窮小D.低階無窮小
19.當x→0時,3x是x的().
A.高階無窮小量B.等價無窮小量C.同階無窮小量,但不是等價無窮小量D.低階無窮小量
20.
21.
22.設f(x)為區間[a,b]上的連續函數,則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
23.
24.
25.
26.
A.-ex
B.-e-x
C.e-x
D.ex
27.
()A.x2
B.2x2
C.xD.2x28.設函數f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個實根B.兩個實根C.三個實根D.無實根
29.
30.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
31.A.
B.
C.
D.
32.下列函數在指定區間上滿足羅爾中值定理條件的是()。A.
B.
C.
D.
33.
34.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
35.A.A.必條件收斂B.必絕對收斂C.必發散D.收斂但可能為條件收斂,也可能為絕對收斂
36.
37.設f(x)在點x0處連續,則下面命題正確的是()A.A.
B.
C.
D.
38.
39.圖示懸臂梁,若已知截面B的撓度和轉角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
40.A.A.
B.
C.
D.
41.
42.
43.
44.下列關系正確的是()。A.
B.
C.
D.
45.()。A.
B.
C.
D.
46.方程y"+3y'=x2的待定特解y*應取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
47.
48.A.A.
B.B.
C.C.
D.D.
49.。A.
B.
C.
D.
50.
二、填空題(20題)51.52.53.
54.設y=f(x)在點x=0處可導,且x=0為f(x)的極值點,則f(0)=__________
55.
56.
57.58.59.60.
61.
62.
63.∫(x2-1)dx=________。64.曲線y=x3-3x2-x的拐點坐標為____。65.函數的間斷點為______.
66.二階常系數線性微分方程y-4y+4y=0的通解為__________.
67.
68.
69.
70.
三、計算題(20題)71.已知某商品市場需求規律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
72.研究級數的收斂性(即何時絕對收斂,何時條件收斂,何時發散,其中常數a>0.73.求函數y=x-lnx的單調區間,并求該曲線在點(1,1)處的切線l的方程.74.
75.
76.求曲線在點(1,3)處的切線方程.77.求函數f(x)=x3-3x+1的單調區間和極值.78.
79.求微分方程y"-4y'+4y=e-2x的通解.
80.當x一0時f(x)與sin2x是等價無窮小量,則
81.
82.設平面薄板所占Oxy平面上的區域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質量m.83.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區域內,以線段AB為下底作內接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
84.將f(x)=e-2X展開為x的冪級數.85.86.
87.求函數一的單調區間、極值及其曲線的凹凸區間和拐點.88.89.求微分方程的通解.90.證明:四、解答題(10題)91.
92.求曲線y=x3+2過點(0,2)的切線方程,并求該切線與曲線及直線x=1所圍成的平面圖形D的面積S。
93.94.
95.
96.設函數f(x)=x3-3x2-9x,求f(x)的極大值。
97.
98.
99.
100.
五、高等數學(0題)101.
=________。
六、解答題(0題)102.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉一周所得旋轉體體積.
參考答案
1.B本題考查的知識點為重要極限公式.可知應選B.
2.D∵f"(x)<0,(a<x≤b).∴(x)單調減少(a<x≤b)當f(b)<0時,f(x)可能大于0也可能小于0。
3.D
4.C
5.C
6.B
7.C因積分區域D是以點(2,1)為圓心的一單位圓,且它位于直線x+y=1的上方,即在D內恒有x+y>1,所以(x+y)2<(x+y)3.所以有I1<I2.
8.B
9.D本題考查了曲線的漸近線的知識點,
10.B
11.A
【評析】基本初等函數的求導公式與導數的四則運算法則是常見的試題,一定要熟記基本初等函數求導公式.對簡單的復合函數的求導,應該注意由外到里,每次求一個層次的導數,不要丟掉任何一個復合層次.
12.A本題考查的知識點為偏導數的計算。由于故知應選A。
13.A
14.C本題考查的知識點為導數的幾何意義.
15.A
16.A
17.B
18.C本題考查的知識點為無窮小階的比較.
應依定義考察
由此可知,當x→0時,2x3+3x是x的同階無窮小,但不是等價無窮小,故知應選C.
本題應明確的是:考察當x→x0時無窮小盧與無窮小α的階的關系時,要判定極限
這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.
19.C本題考查的知識點為無窮小量階的比較.
應依定義考察
由此可知,當x→0時,3x是x的同階無窮小量,但不是等價無窮小量,故知應選C.
本題應明確的是:考察當x→x0時無窮小量β與無窮小量α的階的關系時,要判定極限
這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.
20.A解析:
21.D解析:
22.B本題考查的知識點為定積分的幾何意義.
由定積分的幾何意義可知應選B.
常見的錯誤是選C.如果畫個草圖,則可以避免這類錯誤.
23.B
24.C
25.D
26.C由可變上限積分求導公式有,因此選C.
27.A
28.B
29.A解析:
30.A本題考查的知識點為不定積分運算.
可知應選A.
31.A本題考查的知識點為偏導數的計算。由于故知應選A。
32.C
33.D解析:
34.D本題考查的知識點為定積分的性質;牛頓-萊布尼茨公式.
可知應選D.
35.D
36.B解析:
37.C本題考查的知識點有兩個:連續性與極限的關系;連續性與可導的關系.
連續性的定義包含三個要素:若f(x)在點x0處連續,則
(1)f(x)在點x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續性與可導的關系:可導必定連續;連續不一定可導,可知命題D不正確.故知,應選C.
本題常見的錯誤是選D.這是由于考生沒有正確理解可導與連續的關系.
若f(x)在點x0處可導,則f(x)在點x0處必定連續.
但是其逆命題不成立.
38.C
39.C
40.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。
41.C
42.B
43.B
44.B由不定積分的性質可知,故選B.
45.A
46.D本題考查的知識點為二階常系數線性微分方程特解y*的取法.
由于相應齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項f(x)=x2,相應于Pn(x)eαx中α=0為單特征根,因此應設
故應選D.
47.A解析:
48.B本題考查了已知積分函數求原函數的知識點
49.A本題考查的知識點為定積分換元積分法。
因此選A。
50.D51.e-1/252.6.
本題考查的知識點為無窮小量階的比較.
53.k=1/2
54.
55.本題考查的知識點為函數商的求導運算.
考生只需熟記導數運算的法則
56.57.3x2
58.
本題考查的知識點為二重積分的性質.
59.60.本題考查的知識點為重要極限公式。
61.(03)(0,3)解析:
62.
63.64.(1,-1)65.本題考查的知識點為判定函數的間斷點.
僅當,即x=±1時,函數沒有定義,因此x=±1為函數的間斷點。
66.
67.2
68.
解析:
69.π/4本題考查了定積分的知識點。
70.
71.需求規律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
72.
73.
74.由一階線性微分方程通解公式有
75.
76.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或寫為2x+y-5=0.
如果函數y=f(x)在點x0處的導數f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.函數的定義域為
注意
78.
79.解:原方程對應的齊次方程為y"-4y'+4y=0,
80.由等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業地產整裝技術與環保材料應用
- 工業污染治理與環境保護策略
- 工業污染源監測及治理方案
- 工業污染防治與循環經濟
- 工業機器人技術及其產業升級策略
- 工業生產中的質量控制與檢測技術
- 工業自動化系統的遠程監控與控制
- 工業機械設備的使用與日常維護
- 工業環境影響評價與法規要求
- 工業自動化與智能工廠的發展趨勢
- 散裝白酒培訓課件
- 鋁材設計知識培訓課件
- 客運安全培訓課件
- 2025年市建設工程質量監督站工作總結(3篇)
- 《ptc鈦酸鋇陶瓷》課件
- 氮氣安全知識培訓課件
- 銀發經濟的發展路徑
- 金礦融資計劃書范文
- 2024年11月人力資源管理師三級真題及答案
- JGJ46-2024 建筑與市政工程施工現場臨時用電安全技術標準
- 足球場草坪養護管理手冊
評論
0/150
提交評論