流體力學放映第4章流體動力學(5-1)上課_第1頁
流體力學放映第4章流體動力學(5-1)上課_第2頁
流體力學放映第4章流體動力學(5-1)上課_第3頁
流體力學放映第4章流體動力學(5-1)上課_第4頁
流體力學放映第4章流體動力學(5-1)上課_第5頁
已閱讀5頁,還剩133頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

流體動力學基礎第四章2023/1/1412023/1/142學習重點透徹理解流體元流伯努利方程,會用畢托管測流速。了解N—S方程。掌握實際流體能量方程、動量方程;掌握流體運動總流的分析方法,能熟練運用三大運動方程解決實際問題;2023/1/143(1)流體動力學——研究流體運動且涉及力的規律及在工程中的應用。(2)遵循的規律牛頓第二定律動量定律2023/1/144§4—1流體運動微分方程一、無粘性流體運動微分方程——歐拉運動微分方程適用范圍:可壓縮、不可壓縮;恒定、非恒定;有旋、無旋流。物理意義:用微分方程式去解釋運動

2023/1/145流體運動微分方程的推導研究問題的方法:1、選控制體;2受力分析;3找出關系式;4、結論2023/1/146流體質點的加速度表達式當地加速度(時變導數):表示流體通過某固定點時速度隨時間的變化率。遷移加速度(位變導數):表示某一時刻流體流經不同空間點時速度的變化率。歐拉法2023/1/1472023/1/148壓應力的特性和大小:因為實際流體運動存在切應力,故各方位的壓應力不盡相等,可取其平均值,每個方向上的壓應力均可看作由均值

p

加上附加壓應力p

——平均壓應力對于不可壓縮流體有:4—4線變形2023/1/149不可壓縮流體取02023/1/14102023/1/14114—42023/1/14124—7三、N-S方程N-S方程表示作用在單位質量流體上的質量力、表面力和慣性力相平衡。------------粘性流體運動微分方程2023/1/14132023/1/1414§4—2元流伯努利方程一、無粘性流體(理想流體)運動微分方程伯努利積分對4—2積分2023/1/1415=0=dU=dp/ρ2023/1/14162、伯努利方程:不可壓縮、均質、理想流體、恒定流運動方程(固體邊界相對地球無運動)。3、只受重力作用的伯努利方程:積分得:2023/1/14172023/1/14182023/1/14193、畢托管AhuA圖:AhuA原理:利用理想元流伯努利方程。測量點流速的儀器gAsppgcu-=2ggsAApgup=+22公式:2023/1/14202023/1/14212023/1/1422三、實際流體(粘性流體)元流運動伯努利方程4—18式1、方程不可壓縮、均質、恒定、實際流體伯努利方程。2023/1/1423§4—3恒定總流伯努利方程一、實際總流能量方程(1)元流的能量方程:(2)連續性方程dQ=u1dA1=u2dA21、推導依據:2023/1/14242023/1/14252023/1/14262023/1/14272023/1/14282、方程:漸變流過流斷面上動水壓強分布符合靜水壓強分布規律2023/1/1429二、伯努利方程方程中各項的意義參考元流2023/1/1430與元流的區別2023/1/1431(1)(2)(3)(4)(5)(6)2023/1/1432H1Hp1Z1P1/γa1v12/2gZ2a2v22/2gH2Hp2P2/γ總水頭線測壓管水頭線水流軸線水頭線:表示總流沿程能量變化的幾何圖示。四、水頭線2023/1/1433大氣壓強、汽化壓強,H安裝高度=不能汽化(Pa-P汽化)2023/1/14342023/1/1435注:流體的總機械能(總水頭)總是沿程下降;流體的各種能量可以相互轉換。1、水力坡度

J:2、測壓管坡度Jp:3、水頭線的繪制:以后詳細講五、其它概念2023/1/1436六、能量方程的應用條件及使用方法1、應用條件:(1)流體的流動為恒定流;(2)流體不可壓縮;(3)流體所受質量力只有重力;(4)流體運動是連續的。2023/1/14372、使用方法:原則上可任選,一般可盡量使位置水頭為零(即:Z=0)。2023/1/1438七、能量方程的延伸應用1、有匯流或分流時:

112233可分別列方程,如:1—1與2—2斷面1—1與3—3斷面2023/1/14392023/1/14402、有能量輸入或輸出時:可列方程:假如:Hm——輸入或輸出能量2023/1/1441六、不可壓縮氣體伯努利方程1、方程中的壓強為相對壓強時:2、方程中的壓強為絕對壓強時:2023/1/1442其中:——動壓。單位體積氣體所具有的動能。

p

——靜壓。單位體積氣體所具有的壓能全壓g(ρa-ρ)(z2-z1)——位壓。單位體積氣體所具有的位能。勢壓總壓1122z1z22023/1/1443七、方程應用舉例:文丘里流量計原理:能量方程、連續性方程——測量流量的裝置。由漸縮管、喉管、漸擴管三部分組成。收縮段擴散段h文丘里流量計2023/1/14442023/1/1445

2、文丘里流量計

原理:根據能量方程、連續性方程。由壓差的的量測求出流速和流量。寫1、2斷面的能量方程式:移項連續性方程:整理得:

修正:其中K、分別表示儀器常數和文丘里流量計系數。2023/1/1446其中K、分別表示儀器常數和文丘里流量計系數。2023/1/14472023/1/14482023/1/14492023/1/14502023/1/1451向心加速度做勻速圓周運動的物體收到的合外力總是指向圓心2023/1/14522023/1/14532023/1/14542023/1/1455§4—5恒定總流動量方程一、動量方程1、推導方程的依據:動量定理。2、可解決的問題:急變流中,流體與邊界面(固體)之間力的作用。2023/1/14563、基本概念回顧拉格朗日法歐拉法2023/1/14572023/1/14582023/1/14592023/1/1460u1u22023/1/14614、從元流分析開始分析2023/1/1462T-0時刻控制體所具有的動量T+dt時刻控制體所具有的動量紅框為控制體2023/1/1463始端微小體積末端微小體積動量定理:2023/1/14645、總流的動量方程(定常流):總流的動量方程2023/1/1465注意:1>力F與流速v均為矢量。2>為計算方便,常采用直角坐標分量形式。2023/1/14662023/1/1467幾點說明:1>方程是矢量式,正確取好外力和速度的正負號;2>建立坐標系應盡量使問題簡化;3>計算斷面為漸變流斷面(中間可為急變流);4>動量差=流出控制體的動量-流入控制體的動量,5>求壓力的壓強p

一律采用相對壓強;6>一般要與連續性方程、能量方程聯用。切不可顛倒;2023/1/14682023/1/14696、動量矩定理2023/1/14702023/1/1471二、方程的應用條件及使用方法1、應用條件:可參照能量方程。2、解題方法:1>選取控制體:研究的2個漸變流斷面之間的水體;2>建立坐標系,分析控制體上的受力(包括:表面力和重力);3>規定好力與流速的投影的大小和方向;4>列動量方程求解。可參照能量方程。2023/1/1472能量方程的解題步驟:動量方程的解題步驟:三選一列:2023/1/14732023/1/1474注:速度的方向(是否與坐標相同)分正負!公式里的負號與速度的負號不同。2023/1/14753、例題2023/1/14762023/1/1477P在X軸上無分量2023/1/14782023/1/14792023/1/14802023/1/14812023/1/14822023/1/1483例題2023/1/1484例題2023/1/1485例題2023/1/14862023/1/1487壓力2023/1/14882023/1/14892023/1/14902023/1/14912023/1/14922023/1/14932023/1/1494注:坐標、方向;擋板上沒有摩擦力。2023/1/1495注:坐標、方向2023/1/1496例題22023/1/1497例題(如何建坐標系是這個題的技巧)2023/1/1498例題2023/1/1499例題2023/1/14100例題2023/1/14101xyθ112233R例:水流水平沖擊一光滑平板,水流的重量忽略,求Q2,Q3,R。x方向:-R=(0+0)-ρQ1β1v1sinθy方向:0=(ρQ2β2v2-ρQ3β3v3)

-ρQ1β1v1cosθ列方程如下:1、動量方程:2023/1/141022、連續性方程:Q1=Q2+Q3可分別對1—1與2—2、1—1與3—3斷面列方程,從而可得到:v1=v2=v33、能量方程:xyθ112233R2023/1/14103例3、如圖所示,有一高度a為50mm,速度v1為18m/s的單寬射流水段,沖擊在邊長為1.2m的光滑平板AB上。射流沿平板表面分成兩股,已知平板與水流方向的夾角為300,平板B端為鉸點。若忽略水流、空氣和平板的摩阻,且流動在同一水平面上,求:(1)流量分配Q2和Q3

;(2)設射流沖擊點位于平板形心,若平板自重可忽略,A端應施加多大的垂直力P,才能保持平板的平衡。AB2023/1/14104解:(1)求,。分別列1-2,1-3斷面的能量方程,取(2)列動量方程,取1-1,2-2,3-3斷面間水體為控制體,建立如圖坐標系,分析受力。設作用在水股上的力為,垂直于板AB。①y軸方向上動量方程322v2AB113yxR'v1v32023/1/14105取代入上式得②x軸方向動量方程流體對板AB的沖擊力R為8100N,方向與R‘

相反,垂直指向AB板面。(3)求P

合力矩定理2023/1/141062023/1/141072023/1/141082023/1/141092023/1/141102023/1/141112023/1/141122023/1/14113沿程水頭損失---用下降的斜線表示2023/1/141142023/1/14115局部水頭損失---用向下短線表示沿程水頭損失---用下降的斜線表示2023/1/141162023/1/141172023/1/141182023/1/1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論