XRD-殘余應力測試課件_第1頁
XRD-殘余應力測試課件_第2頁
XRD-殘余應力測試課件_第3頁
XRD-殘余應力測試課件_第4頁
XRD-殘余應力測試課件_第5頁
已閱讀5頁,還剩85頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

BSSMWorkshop

PARTII

Thesin2ψMethodUsingLaboratoryX-Rays

JudithShackleton

SchoolofMaterials,UniversityofManchesterBSSMWorkshop

PARTII

Thesin2Thesin2ψMethod

WhatareWeMeasuring?WemeasuretheELASTICStrain.WecandetermineMagnitudeofthestress,ItsdirectionItsnature CompressiveortensileWeusetheplanesofthecrystallatticeasanatomicscale“straingauge”Thesin2ψMethod

WhatareWeThesin2ψMethod

HowDoesitWork?WemeasureSTRAIN()notSTRESS()WeCALCULTESTRESSfromtheSTRAIN&theELASTICCONSTANTSWeusetheplanesd{hkl},ofthecrystallatticeasastraingaugeWecanmeasurethechangeind-spacing,dStrain==d/dThesin2ψMethod

HowDoesitChangesind-spacing

withStressConsiderabarwhichisintensionThed-spacingsoftheplanesnormaltotheappliedstressincrease,asthestressistensileThed-spacingsoftheplanesparalleltotheappliedstressdecrease,duetoPoissonstrainChangesind-spacing

withStrMeasuringElastic&

Inelastic

StrainPrimarilywearemeasuringmacrostressesThisisauniformdisplacementofthelatticeplanesThesecauseaVERYSMALLshiftintheposition,theBraggangle2,ofthereflection&wecanmeasurethis(OnlyJust!!)Inelasticstressescausepeakbroadening,whichcanbemeasured.Thisisanextensivesubject,notcoveredhere.MeasuringElastic&

InelastiWhichMaterialsCan

WeMeasure?Worksonanypoly-crystallinesolidwhichgivesahighangleBraggreflectionMetalsCeramics(noteasy!)Multi-phasematerialsNotusuallyappliedtopolymers,asnosuitablereflections,canaddametallicpowder,reportedintheliteratureWhichMaterialsCan

WeMeasurWhyusethesin2

Method

TheAdvantagesMostImportantAstressfreed-spacingisNOTrequiredforthebi-axialcasewhichisalmostalwaysusedOtheradvantagesLowcost(comparedwithneutrons&synchrotrons,butnotholedrilling)Non-destructive,unlikeholedrillingEasytodo&fairlyfoolproof(ifyouarecareful!!)Whyusethesin2

Method

TheDisadvantagesMostImportantSurfacemethodonly,X-raybeampenetrationdepth10to20microns,atbestFordepthprofilingmustelectro-polish,gives1-1.5mmOtherDisadvantagesAffectedbygrainsize,texture(preferredorientation)&surfaceroughnessDoesn’tworkonamorphousmaterials(obviously!!)DisadvantagesMostImportantBasicTheoryConsideraunitcube(quiteabigone!)embeddedinacomponentNotation,(ij)thestresscomponentactingonfaceiindirection(paralleltoaxis)jBasicTheoryConsideraunitcuBasicTheoryThenormalstressesactnormaltothecubefaces&thetwosubscriptsarethesamee.g..(22)Theshearstresses(twistingforces)actparalleltothecubefaces&thetwosubscriptsaredifferente.g.(31)orinthegeneralcase(ij)Wemeasurenormalstresses&shearstresses,butthat’snotwhatwewant,wedon’tgetalloftheinformation!Why??BasicTheoryBasicTheory

NormalStressesFromelastictheoryofisotropicmaterials,the3normalstrainsaregivenby, 11=1 [11-(22+33)]

E 22=1 [22-(33+11)]

E 33=1 [33-(11+22)]

EThestraininanydirectionisafunctionofthestressintheothers!!.Ideally,weshouldmeasuremorethanonedirectionBasicTheory

NormalStressesFrPrincipalStressesWeshouldmeasuremorethanonedirectiontogetacompletepictureofthestressinthecomponentIfwemeasure3directionsormorewecancalculatethePRINCIPALSTRESSESS,thesearethedirectionsonwhichnoshearstressactsWedothisbyrotatingthesamplethroughanangle,initsownplane,exactdetails&diagramslaterPrincipalStressesWeshouldmeHowtheSin2Method

Works

Samplein“BraggCondition”Diffractionvector,normaltosamplesurfacednWemeasurethed-spacingwiththeangleofincidence()&theangleofreflectionoftheX-raybeam(withrespecttothesamplesurface)equal.Theseplanesareparalleltothefreesurface&unstressed,butnotunstrainedAlsocalledfocussedgeometryHowtheSin2Method

Works

SaHowtheSin2Method

WorksDiffractionvector,titledwithrespecttosamplesurfaceTiltthesamplethroughanangleandmeasurethed-spacingagain.Theseplanesarenotparalleltothefreesurface.Theird-spacingischangedbythestressinthesample.dDefocusedgeometryHowtheSin2Method

WorksDifHowtheSin2Method

WorksWetiltthesamplethroughananglepsi,tomeasuremagnitudethenormal&shearstressesWeusearangeofvaluesof(calledoffsets)forexample,from0to45instepsof5NEVERusethe“DoubleExposureMethod”whichusesjustoneoffsets.Notenoughdatapoints!Werotatethethesamplethroughanangle,todeterminethedirectionsoftheprinciplestressesHowtheSin2Method

WorksWeNoStressFreed-Spacing

Needed

TheApproximationThedepthofpenetrationoftheX-raybeaminthesampleissmall,typically<20Wecansaythatthereisnostresscomponentperpendiculartothesamplesurface,thatis33=0Wecanusethed-spacingmeasuredat=0asthestressfreed-spacingThisisthed-spacingoftheplanesparalleltothesamplesurfaceAreasonableapproximation!!Theerroris<2%,certainlylessthantryingtomakeastressfreestandard!!!NoStressFreed-Spacing

NeedTheEquationforthe

sin2

MethodThesimplestformoftheequationis, = E d-dn (1+)sin2 dnWere=StressindirectionE=Young’smodulus(GPa)=Poisson’sratio=Tiltangle(degrees)d=d-spacingmeasuredattiltangle,(?)dn=The“stressfreed-spacing”fromourapproximation measuredat=0(?)StrainTermTheEquationforthe

sin2MeThesin2Plot:TheResults!dnisobtainedbyextrapolatingaplotofd

(orstrain)againstsin2to=0Stressisobtainedfromthegradient,mofthesin2plot = E m (1+)Ifthed-spacingdecreases,thestressiscompressive(planespushedtogether)Ifthed-spacingincreasesthestressistensile(planespulledapart)Thesin2Plot:TheResults!Thesin2Plot:Example

WecanplotSTRAINagainstsin2&obtaintheSTRESSfromthegradientThesin2Plot:ExampleWecaThesin2Plot:ExampleAlso,wecanplotd{hkl}againstsin2&obtainthestressfromthegradient,whichisthesameonbothplotsThesin2Plot:ExampleAlso,General:Stress

DiffractometersBasicallyadaptedpowderdiffractometersCanaccommodatelarger,heaviersamplesMaximumaccessible2angleislargerUsuallyabout1652(checkthisifyoubuyone!!!)Moreaxesofrotationthanastandardpowderdiffractometer,omegaand2canmoveindependentlyGeneral:Stress

DiffractometeThereareTwoBasicTypesLaboratoryBasedSystemsFixedlocationCanusuallybeusedforotherapplications,forexamplephaseidentificationPortablesystemsDesignedspecificallyforresidualstressmeasurementsCancarriedandfixedtoalargecomponent(aircraft!)ThereareTwoBasicTypesLaborDiffractionAnglesused

inStressAnalysisDiffractionAnglesused

inStDiffractionGeometry

SummaryoftheAnglesUsedin

ResidualStressAnalysis

Two-theta(2)

TheBraggangle,anglebetweentheincident(transmitted)anddiffractedX-raybeams.Omega()TheanglebetweentheincidenceX-raybeamandthesamplesurface.Bothomegaandtwo-thetarotateinthesameplane.Phi()Theangleofrotationofthesampleaboutit’ssurfacenormal.Psi()

Anglesthroughwhichthesampleisrotated,inthesin2method.Westartatpsi=0,whereomegaishalfoftwo-thetaandadd(orsubtract)successivepsioffsets,forexample,10,20,30and40Chi()Angleofrotationabouttheaxisoftheincidentbeam.Chirotatesintheplanenormaltothatcontainingomegaandtwo-theta.Thisangleisalsosometimes(confusingly)referredtoasDiffractionGeometry

SummaryoInstrumentation

TheOmegaMethod

PortableSystemsInstrumentation

TheOmegaMethInstrumentationanExample

ofaPortableSystem,Manchester’s

Protoi-XRDInstrumentationanExample

of

DecidingWhattodo?

Weneedtodecidehowtomakeourmeasurements,weneedtomakesomechoices,WhichX-raytubetouse?Whichcrystallographicplanedowechoose?Thebestthingtodoiscopywhatsomeoneelsehasdone!YourresultswillbecomparablewiththosemadebyotherworkersManyIndustrieshave“set”methods

DecidingWhattodo?

Weneed

RadiationSelection

ChoiceofX-RayTube

(Wavelength!)

ALWAYScheckwhatotherpeoplehavedoneinthepastas,generallymeasurementsondifferentplaneswithdifferentwavelengthsarenotcomparable3Considerations(1)Dispersion(2)Fluorescence(3)Choiceofcrystallographicplane

RadiationSelection

Choiceo

RadiationSelection

ChoiceofX-RayTube

(Wavelength!)

Wecanmeasurethestressinavarietyofmaterials(i.e.ferrite,austenite,nickel,aluminium,corundumetc)usingthesamediffractometer,bychangingtheX-raytube&consequentlythewavelengthoftheX-rays.MostresidualstressdiffractometerswillhaveaselectionofX-raytubesavailableHowdowechoose?????

RadiationSelection

Choiceo

ChoiceofX-RayTube

(1)Dispersion

Weneeda2angle,ideally>1402Thechangeind-spacing,duetostrain,isverysmall,typicallyinthethirddecimalplaceThedispersionofthediffractionpatternismuchgreaterathigh2angles.Thesmallchangesind-spacingcanonlybedetectedatangles>125°2

ChoiceofX-RayTube

(1)Dis

ChoiceofX-RayTube

(1)Dispersion

AnExample

Ifwehaveareflectionfromferrite{211}at1562.UsingradiationfromachromiumanodeX-raytubeofwavelength2.2897?Ifweintroduceastressof200MPa,givenYoung’smodulusof220GPa,whatisthechangeinthe2angle?Answer,thenew2angleis155.51Thedifferenceis0.48NOTMUCH!!!

ChoiceofX-RayTube

(1)Disp

ChoiceofX-RayTube

(2)SampleFluorescence

IftheK-1componentoftheincidentX-raybeamcausesthesampleemititsownfluorescentX-rays,DONOTUSEITX-raypenetrationdepthwillbeverysmall<5microns&NOTrepresentativeofthebulkPeaktobackgroundratiowillbeterribleMaydamagesensitivedetectors

ChoiceofX-RayTube

(2)Samp

ChoiceofX-RayTube

(3)ChoiceofCrystallographic

Plane

ForaccuratecomparisonwithotherpeoplesdataCHECKwhichplaneshavebeenusedhistorically!!MeasurementsmadeonplaneswithdifferentMiller{hkl}indicesarenotusuallycomparable.Ifthesampleistextured(preferredorientation)selectasetofplaneswithahighmultiplicity

ChoiceofX-RayTube

(3)ChoiChoiceofMeasurement

Conditions:SummaryAsksomeonewhohasexperiencewiththatparticularmaterialDon’tre-inventthewheelChooseradiationtypecarefullyAvoidX-raytubeswhichcauseK-1fluorescenceLot’sof“tricksofthetrade”seetheNPLGoodPracticeGuideforResidualStressMeasurementsusingthesin2MethodChoiceofMeasurement

ConditiDataCollection

PositioningtheSampleSamplemustbecentreofrotationofthegoniometer,mostinstrumentshavedepthgaugeorapointerBecarefulthatthesampleisasflataspossible,bentsampleswillgiveartificialshearstressesForcurvedandunevensamplesrestricttheirradiatedareaHoopdirection,Spotsize<R/4,whereR=radiusofcurvatureAxialdirection,Spotsize<R/2DataCollection

PositioningthDataCollection

Makesurethatyoucollectdataoverasufficient2range!Includethebackgroundonbothsidesofthepeak.Canbedifficultasinelasticisusuallypresent&thiscausespeakbroadening.Peakscanbeupto102Countforasufficienttimetoensureadequatestatistics,need>1000countatthetopofthepeakifpossibleDataCollection

MakesurethatDataProcessingALWAYSCHECKTHISSTAGENeedaprogramwithgoodgraphicsStagesinthedataprocessingBackgroundstrippingK-2stripping(onlyifK-2peakisvisible)LorentzPolarisationCorrectionPeakfittingtolocatemaximumCriticalStage,checktheresultsonthescreen.Avarietyofpeakmodelsareavailablemostofwhichwillwork.UsuallyuseGaussian,don’tuseparabolaGoodqualitydatacanbefittedwithmostmodels,thisisagoodtest!DataProcessingALWAYSCHECKTHHowPrecisearethe

ResultsGenerallythere’salotofscatteronsin2plots!TheerrorbarsprintedoutbymostPC’sarejustthestandarddeviationofthepointsfromthefittedlineandtendunderestimatetheerrorsLargeerrorbarsarenotnecessarilyunacceptableandaredueto,Texture,largegrainsize,poorpeakfittingetcForexample,20050MPaisquitenormalCheckthepeaksonthescreen!Valuesoflessthan50MPa,canusuallybethoughtofaszero,thisdependsontheinstrument

Toconfirmsuchlowreadingsmakeseveralmeasurements&seeiftheyallcomeoutwiththesamesign(i.e.allcompressive)HowPrecisearethe

ResultsGeInstrumentMisalignment-Omega-2misalignments-Omega-misalignments(sideinclinationmethod)Instrumentmisalignmentcauses,ShiftsinthepositionsofthereflectionsandincorrectstressvaluesThepositiveandnegativemeasurementsgivedifferentpeakpositions,thisiscalledsplittingWemustmeasureatleasttwostandardstoverifythatthemachineisworkingcorrectlyInstrumentMisalignment-OmegaInstrumentMisalignment-RecommendedStandardsAstressfreepowderNotaneasythingtomakeBewarestressesduetofilingandoxidationCanbecombinedwithresinforeaseofuseAstressedstandardBecareful,alwaysmeasureinthesamedirectionShotpeenedsamplesaregoodUsuallyverifiedbyRound-RobintestsNocertifiedstandards(???)OnesetforeachtubeanodeInstrumentMisalignment-RecomAtypicalExampleofa

StressProfileina

ShotPeenedSampleAshotpeenedsurface,depthprofiledbyElectro-polishing

AtypicalExampleofa

StressProblems!!!Goodone,thematerialhasasmallgrainsize(<100)isisotropic,ratherthantextured&there’snoshearstress.Ideal!Texture,the“wiggle”OursampleisnotisotropicShearStress,thepositive&negativeplotssplitProblems!!!Goodone,themaShearStresses

sin2SplittingPositiveandnegativegivedifferentresultswhenashearstressispresent(orsampleisnotcorrectlypositioned,alwayscheck!)FunctionofthedirectionofthemeasurementShearStresses

sin2SplittingConclusionsThesin2

methodworkswellifyouarecarefulChecktoseewhat’sbeendonebyothersDon’treinventthewheelChooseyouX-raytubewithcarePositionthesamplecarefullyThinkaboutthedirectionsyouwishtomeasureMeasureasufficientrangeof2&countforasufficienttimeCheckyoupeakfittingDotheresultsmakesense?????? ConclusionsThesin2methodwThankYou&Happy

Landings!

ThankYou&Happy

Landings!

BSSMWorkshop

PARTII

Thesin2ψMethodUsingLaboratoryX-Rays

JudithShackleton

SchoolofMaterials,UniversityofManchesterBSSMWorkshop

PARTII

Thesin2Thesin2ψMethod

WhatareWeMeasuring?WemeasuretheELASTICStrain.WecandetermineMagnitudeofthestress,ItsdirectionItsnature CompressiveortensileWeusetheplanesofthecrystallatticeasanatomicscale“straingauge”Thesin2ψMethod

WhatareWeThesin2ψMethod

HowDoesitWork?WemeasureSTRAIN()notSTRESS()WeCALCULTESTRESSfromtheSTRAIN&theELASTICCONSTANTSWeusetheplanesd{hkl},ofthecrystallatticeasastraingaugeWecanmeasurethechangeind-spacing,dStrain==d/dThesin2ψMethod

HowDoesitChangesind-spacing

withStressConsiderabarwhichisintensionThed-spacingsoftheplanesnormaltotheappliedstressincrease,asthestressistensileThed-spacingsoftheplanesparalleltotheappliedstressdecrease,duetoPoissonstrainChangesind-spacing

withStrMeasuringElastic&

Inelastic

StrainPrimarilywearemeasuringmacrostressesThisisauniformdisplacementofthelatticeplanesThesecauseaVERYSMALLshiftintheposition,theBraggangle2,ofthereflection&wecanmeasurethis(OnlyJust!!)Inelasticstressescausepeakbroadening,whichcanbemeasured.Thisisanextensivesubject,notcoveredhere.MeasuringElastic&

InelastiWhichMaterialsCan

WeMeasure?Worksonanypoly-crystallinesolidwhichgivesahighangleBraggreflectionMetalsCeramics(noteasy!)Multi-phasematerialsNotusuallyappliedtopolymers,asnosuitablereflections,canaddametallicpowder,reportedintheliteratureWhichMaterialsCan

WeMeasurWhyusethesin2

Method

TheAdvantagesMostImportantAstressfreed-spacingisNOTrequiredforthebi-axialcasewhichisalmostalwaysusedOtheradvantagesLowcost(comparedwithneutrons&synchrotrons,butnotholedrilling)Non-destructive,unlikeholedrillingEasytodo&fairlyfoolproof(ifyouarecareful!!)Whyusethesin2

Method

TheDisadvantagesMostImportantSurfacemethodonly,X-raybeampenetrationdepth10to20microns,atbestFordepthprofilingmustelectro-polish,gives1-1.5mmOtherDisadvantagesAffectedbygrainsize,texture(preferredorientation)&surfaceroughnessDoesn’tworkonamorphousmaterials(obviously!!)DisadvantagesMostImportantBasicTheoryConsideraunitcube(quiteabigone!)embeddedinacomponentNotation,(ij)thestresscomponentactingonfaceiindirection(paralleltoaxis)jBasicTheoryConsideraunitcuBasicTheoryThenormalstressesactnormaltothecubefaces&thetwosubscriptsarethesamee.g..(22)Theshearstresses(twistingforces)actparalleltothecubefaces&thetwosubscriptsaredifferente.g.(31)orinthegeneralcase(ij)Wemeasurenormalstresses&shearstresses,butthat’snotwhatwewant,wedon’tgetalloftheinformation!Why??BasicTheoryBasicTheory

NormalStressesFromelastictheoryofisotropicmaterials,the3normalstrainsaregivenby, 11=1 [11-(22+33)]

E 22=1 [22-(33+11)]

E 33=1 [33-(11+22)]

EThestraininanydirectionisafunctionofthestressintheothers!!.Ideally,weshouldmeasuremorethanonedirectionBasicTheory

NormalStressesFrPrincipalStressesWeshouldmeasuremorethanonedirectiontogetacompletepictureofthestressinthecomponentIfwemeasure3directionsormorewecancalculatethePRINCIPALSTRESSESS,thesearethedirectionsonwhichnoshearstressactsWedothisbyrotatingthesamplethroughanangle,initsownplane,exactdetails&diagramslaterPrincipalStressesWeshouldmeHowtheSin2Method

Works

Samplein“BraggCondition”Diffractionvector,normaltosamplesurfacednWemeasurethed-spacingwiththeangleofincidence()&theangleofreflectionoftheX-raybeam(withrespecttothesamplesurface)equal.Theseplanesareparalleltothefreesurface&unstressed,butnotunstrainedAlsocalledfocussedgeometryHowtheSin2Method

Works

SaHowtheSin2Method

WorksDiffractionvector,titledwithrespecttosamplesurfaceTiltthesamplethroughanangleandmeasurethed-spacingagain.Theseplanesarenotparalleltothefreesurface.Theird-spacingischangedbythestressinthesample.dDefocusedgeometryHowtheSin2Method

WorksDifHowtheSin2Method

WorksWetiltthesamplethroughananglepsi,tomeasuremagnitudethenormal&shearstressesWeusearangeofvaluesof(calledoffsets)forexample,from0to45instepsof5NEVERusethe“DoubleExposureMethod”whichusesjustoneoffsets.Notenoughdatapoints!Werotatethethesamplethroughanangle,todeterminethedirectionsoftheprinciplestressesHowtheSin2Method

WorksWeNoStressFreed-Spacing

Needed

TheApproximationThedepthofpenetrationoftheX-raybeaminthesampleissmall,typically<20Wecansaythatthereisnostresscomponentperpendiculartothesamplesurface,thatis33=0Wecanusethed-spacingmeasuredat=0asthestressfreed-spacingThisisthed-spacingoftheplanesparalleltothesamplesurfaceAreasonableapproximation!!Theerroris<2%,certainlylessthantryingtomakeastressfreestandard!!!NoStressFreed-Spacing

NeedTheEquationforthe

sin2

MethodThesimplestformoftheequationis, = E d-dn (1+)sin2 dnWere=StressindirectionE=Young’smodulus(GPa)=Poisson’sratio=Tiltangle(degrees)d=d-spacingmeasuredattiltangle,(?)dn=The“stressfreed-spacing”fromourapproximation measuredat=0(?)StrainTermTheEquationforthe

sin2MeThesin2Plot:TheResults!dnisobtainedbyextrapolatingaplotofd

(orstrain)againstsin2to=0Stressisobtainedfromthegradient,mofthesin2plot = E m (1+)Ifthed-spacingdecreases,thestressiscompressive(planespushedtogether)Ifthed-spacingincreasesthestressistensile(planespulledapart)Thesin2Plot:TheResults!Thesin2Plot:Example

WecanplotSTRAINagainstsin2&obtaintheSTRESSfromthegradientThesin2Plot:ExampleWecaThesin2Plot:ExampleAlso,wecanplotd{hkl}againstsin2&obtainthestressfromthegradient,whichisthesameonbothplotsThesin2Plot:ExampleAlso,General:Stress

DiffractometersBasicallyadaptedpowderdiffractometersCanaccommodatelarger,heaviersamplesMaximumaccessible2angleislargerUsuallyabout1652(checkthisifyoubuyone!!!)Moreaxesofrotationthanastandardpowderdiffractometer,omegaand2canmoveindependentlyGeneral:Stress

DiffractometeThereareTwoBasicTypesLaboratoryBasedSystemsFixedlocationCanusuallybeusedforotherapplications,forexamplephaseidentificationPortablesystemsDesignedspecificallyforresidualstressmeasurementsCancarriedandfixedtoalargecomponent(aircraft!)ThereareTwoBasicTypesLaborDiffractionAnglesused

inStressAnalysisDiffractionAnglesused

inStDiffractionGeometry

SummaryoftheAnglesUsedin

ResidualStressAnalysis

Two-theta(2)

TheBraggangle,anglebetweentheincident(transmitted)anddiffractedX-raybeams.Omega()TheanglebetweentheincidenceX-raybeamandthesamplesurface.Bothomegaandtwo-thetarotateinthesameplane.Phi()Theangleofrotationofthesampleaboutit’ssurfacenormal.Psi()

Anglesthroughwhichthesampleisrotated,inthesin2method.Westartatpsi=0,whereomegaishalfoftwo-thetaandadd(orsubtract)successivepsioffsets,forexample,10,20,30and40Chi()Angleofrotationabouttheaxisoftheincidentbeam.Chirotatesintheplanenormaltothatcontainingomegaandtwo-theta.Thisangleisalsosometimes(confusingly)referredtoasDiffractionGeometry

SummaryoInstrumentation

TheOmegaMethod

PortableSystemsInstrumentation

TheOmegaMethInstrumentationanExample

ofaPortableSystem,Manchester’s

Protoi-XRDInstrumentationanExample

of

DecidingWhattodo?

Weneedtodecidehowtomakeourmeasurements,weneedtomakesomechoices,WhichX-raytubetouse?Whichcrystallographicplanedowechoose?Thebestthingtodoiscopywhatsomeoneelsehasdone!YourresultswillbecomparablewiththosemadebyotherworkersManyIndustrieshave“set”methods

DecidingWhattodo?

Weneed

RadiationSelection

ChoiceofX-RayTube

(Wavelength!)

ALWAYScheckwhatotherpeoplehavedoneinthepastas,generallymeasurementsondifferentplaneswithdifferentwavelengthsarenotcomparable3Considerations(1)Dispersion(2)Fluorescence(3)Choiceofcrystallographicplane

RadiationSelection

Choiceo

RadiationSelection

ChoiceofX-RayTube

(Wavelength!)

Wecanmeasurethestressinavarietyofmaterials(i.e.ferrite,austenite,nickel,aluminium,corundumetc)usingthesamediffractometer,bychangingtheX-raytube&consequentlythewavelengthoftheX-rays.MostresidualstressdiffractometerswillhaveaselectionofX-raytubesavailableHowdowechoose?????

RadiationSelection

Choiceo

ChoiceofX-RayTube

(1)Dispersion

Weneeda2angle,ideally>1402Thechangeind-spacing,duetostrain,isverysmall,typicallyinthethirddecimalplaceThedispersionofthediffractionpatternismuchgreaterathigh2angles.Thesmallchangesind-spacingcanonlybedetectedatangles>125°2

ChoiceofX-RayTube

(1)Dis

ChoiceofX-RayTube

(1)Dispersion

AnExample

Ifwehaveareflectionfromferrite{211}at1562.UsingradiationfromachromiumanodeX-raytubeofwavelength2.2897?Ifweintroduceastressof200MPa,givenYoung’smodulusof220GPa,whatisthechangeinthe2angle?Answer,thenew2angleis155.51Thedifferenceis0.48NOTMUCH!!!

ChoiceofX-RayTube

(1)Disp

ChoiceofX-RayTube

(2)SampleFluorescence

IftheK-1componentoftheincidentX-raybeamcausesthesampleemititsownfluorescentX-rays,DONOTUSEITX-raypenetrationdepthwillbeverysmall<5microns&NOTrepresentativeofthebulkPeaktobackgroundratiowillbeterribleMaydamagesensitivedetectors

ChoiceofX-RayTube

(2)Samp

ChoiceofX-RayTube

(3)ChoiceofCrystallographic

Plane

ForaccuratecomparisonwithotherpeoplesdataCHECKwhichplaneshavebeenusedhistorically!!MeasurementsmadeonplaneswithdifferentMiller{hkl}indicesarenotusuallycomparable.Ifthesampleistextured(preferredorientation)selectasetofplaneswithahighmultiplicity

ChoiceofX-RayTube

(3)ChoiChoiceofMeasurement

Conditions:SummaryAsksomeonewhohasexperiencewiththatparticularmaterialDon’tre-inventthewheelChooseradiationtypecarefullyAvoidX-raytubeswhichcauseK-1fluorescenceLot’sof“tricksofthetrade”seetheNPLGoodPracticeGuideforResidualStressMeasurementsusingthesin2MethodChoiceofMeasurement

ConditiDataCollection

PositioningtheSampleSamplemustbecentreofrotationofthegoniometer,mostinstrumentshavedepthgaugeorapointerBecarefulthatthesampleisasflataspossib

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論