




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
BSSMWorkshop
PARTII
Thesin2ψMethodUsingLaboratoryX-Rays
JudithShackleton
SchoolofMaterials,UniversityofManchesterBSSMWorkshop
PARTII
Thesin2Thesin2ψMethod
WhatareWeMeasuring?WemeasuretheELASTICStrain.WecandetermineMagnitudeofthestress,ItsdirectionItsnature CompressiveortensileWeusetheplanesofthecrystallatticeasanatomicscale“straingauge”Thesin2ψMethod
WhatareWeThesin2ψMethod
HowDoesitWork?WemeasureSTRAIN()notSTRESS()WeCALCULTESTRESSfromtheSTRAIN&theELASTICCONSTANTSWeusetheplanesd{hkl},ofthecrystallatticeasastraingaugeWecanmeasurethechangeind-spacing,dStrain==d/dThesin2ψMethod
HowDoesitChangesind-spacing
withStressConsiderabarwhichisintensionThed-spacingsoftheplanesnormaltotheappliedstressincrease,asthestressistensileThed-spacingsoftheplanesparalleltotheappliedstressdecrease,duetoPoissonstrainChangesind-spacing
withStrMeasuringElastic&
Inelastic
StrainPrimarilywearemeasuringmacrostressesThisisauniformdisplacementofthelatticeplanesThesecauseaVERYSMALLshiftintheposition,theBraggangle2,ofthereflection&wecanmeasurethis(OnlyJust!!)Inelasticstressescausepeakbroadening,whichcanbemeasured.Thisisanextensivesubject,notcoveredhere.MeasuringElastic&
InelastiWhichMaterialsCan
WeMeasure?Worksonanypoly-crystallinesolidwhichgivesahighangleBraggreflectionMetalsCeramics(noteasy!)Multi-phasematerialsNotusuallyappliedtopolymers,asnosuitablereflections,canaddametallicpowder,reportedintheliteratureWhichMaterialsCan
WeMeasurWhyusethesin2
Method
TheAdvantagesMostImportantAstressfreed-spacingisNOTrequiredforthebi-axialcasewhichisalmostalwaysusedOtheradvantagesLowcost(comparedwithneutrons&synchrotrons,butnotholedrilling)Non-destructive,unlikeholedrillingEasytodo&fairlyfoolproof(ifyouarecareful!!)Whyusethesin2
Method
TheDisadvantagesMostImportantSurfacemethodonly,X-raybeampenetrationdepth10to20microns,atbestFordepthprofilingmustelectro-polish,gives1-1.5mmOtherDisadvantagesAffectedbygrainsize,texture(preferredorientation)&surfaceroughnessDoesn’tworkonamorphousmaterials(obviously!!)DisadvantagesMostImportantBasicTheoryConsideraunitcube(quiteabigone!)embeddedinacomponentNotation,(ij)thestresscomponentactingonfaceiindirection(paralleltoaxis)jBasicTheoryConsideraunitcuBasicTheoryThenormalstressesactnormaltothecubefaces&thetwosubscriptsarethesamee.g..(22)Theshearstresses(twistingforces)actparalleltothecubefaces&thetwosubscriptsaredifferente.g.(31)orinthegeneralcase(ij)Wemeasurenormalstresses&shearstresses,butthat’snotwhatwewant,wedon’tgetalloftheinformation!Why??BasicTheoryBasicTheory
NormalStressesFromelastictheoryofisotropicmaterials,the3normalstrainsaregivenby, 11=1 [11-(22+33)]
E 22=1 [22-(33+11)]
E 33=1 [33-(11+22)]
EThestraininanydirectionisafunctionofthestressintheothers!!.Ideally,weshouldmeasuremorethanonedirectionBasicTheory
NormalStressesFrPrincipalStressesWeshouldmeasuremorethanonedirectiontogetacompletepictureofthestressinthecomponentIfwemeasure3directionsormorewecancalculatethePRINCIPALSTRESSESS,thesearethedirectionsonwhichnoshearstressactsWedothisbyrotatingthesamplethroughanangle,initsownplane,exactdetails&diagramslaterPrincipalStressesWeshouldmeHowtheSin2Method
Works
Samplein“BraggCondition”Diffractionvector,normaltosamplesurfacednWemeasurethed-spacingwiththeangleofincidence()&theangleofreflectionoftheX-raybeam(withrespecttothesamplesurface)equal.Theseplanesareparalleltothefreesurface&unstressed,butnotunstrainedAlsocalledfocussedgeometryHowtheSin2Method
Works
SaHowtheSin2Method
WorksDiffractionvector,titledwithrespecttosamplesurfaceTiltthesamplethroughanangleandmeasurethed-spacingagain.Theseplanesarenotparalleltothefreesurface.Theird-spacingischangedbythestressinthesample.dDefocusedgeometryHowtheSin2Method
WorksDifHowtheSin2Method
WorksWetiltthesamplethroughananglepsi,tomeasuremagnitudethenormal&shearstressesWeusearangeofvaluesof(calledoffsets)forexample,from0to45instepsof5NEVERusethe“DoubleExposureMethod”whichusesjustoneoffsets.Notenoughdatapoints!Werotatethethesamplethroughanangle,todeterminethedirectionsoftheprinciplestressesHowtheSin2Method
WorksWeNoStressFreed-Spacing
Needed
TheApproximationThedepthofpenetrationoftheX-raybeaminthesampleissmall,typically<20Wecansaythatthereisnostresscomponentperpendiculartothesamplesurface,thatis33=0Wecanusethed-spacingmeasuredat=0asthestressfreed-spacingThisisthed-spacingoftheplanesparalleltothesamplesurfaceAreasonableapproximation!!Theerroris<2%,certainlylessthantryingtomakeastressfreestandard!!!NoStressFreed-Spacing
NeedTheEquationforthe
sin2
MethodThesimplestformoftheequationis, = E d-dn (1+)sin2 dnWere=StressindirectionE=Young’smodulus(GPa)=Poisson’sratio=Tiltangle(degrees)d=d-spacingmeasuredattiltangle,(?)dn=The“stressfreed-spacing”fromourapproximation measuredat=0(?)StrainTermTheEquationforthe
sin2MeThesin2Plot:TheResults!dnisobtainedbyextrapolatingaplotofd
(orstrain)againstsin2to=0Stressisobtainedfromthegradient,mofthesin2plot = E m (1+)Ifthed-spacingdecreases,thestressiscompressive(planespushedtogether)Ifthed-spacingincreasesthestressistensile(planespulledapart)Thesin2Plot:TheResults!Thesin2Plot:Example
WecanplotSTRAINagainstsin2&obtaintheSTRESSfromthegradientThesin2Plot:ExampleWecaThesin2Plot:ExampleAlso,wecanplotd{hkl}againstsin2&obtainthestressfromthegradient,whichisthesameonbothplotsThesin2Plot:ExampleAlso,General:Stress
DiffractometersBasicallyadaptedpowderdiffractometersCanaccommodatelarger,heaviersamplesMaximumaccessible2angleislargerUsuallyabout1652(checkthisifyoubuyone!!!)Moreaxesofrotationthanastandardpowderdiffractometer,omegaand2canmoveindependentlyGeneral:Stress
DiffractometeThereareTwoBasicTypesLaboratoryBasedSystemsFixedlocationCanusuallybeusedforotherapplications,forexamplephaseidentificationPortablesystemsDesignedspecificallyforresidualstressmeasurementsCancarriedandfixedtoalargecomponent(aircraft!)ThereareTwoBasicTypesLaborDiffractionAnglesused
inStressAnalysisDiffractionAnglesused
inStDiffractionGeometry
SummaryoftheAnglesUsedin
ResidualStressAnalysis
Two-theta(2)
TheBraggangle,anglebetweentheincident(transmitted)anddiffractedX-raybeams.Omega()TheanglebetweentheincidenceX-raybeamandthesamplesurface.Bothomegaandtwo-thetarotateinthesameplane.Phi()Theangleofrotationofthesampleaboutit’ssurfacenormal.Psi()
Anglesthroughwhichthesampleisrotated,inthesin2method.Westartatpsi=0,whereomegaishalfoftwo-thetaandadd(orsubtract)successivepsioffsets,forexample,10,20,30and40Chi()Angleofrotationabouttheaxisoftheincidentbeam.Chirotatesintheplanenormaltothatcontainingomegaandtwo-theta.Thisangleisalsosometimes(confusingly)referredtoasDiffractionGeometry
SummaryoInstrumentation
TheOmegaMethod
PortableSystemsInstrumentation
TheOmegaMethInstrumentationanExample
ofaPortableSystem,Manchester’s
Protoi-XRDInstrumentationanExample
of
DecidingWhattodo?
Weneedtodecidehowtomakeourmeasurements,weneedtomakesomechoices,WhichX-raytubetouse?Whichcrystallographicplanedowechoose?Thebestthingtodoiscopywhatsomeoneelsehasdone!YourresultswillbecomparablewiththosemadebyotherworkersManyIndustrieshave“set”methods
DecidingWhattodo?
Weneed
RadiationSelection
ChoiceofX-RayTube
(Wavelength!)
ALWAYScheckwhatotherpeoplehavedoneinthepastas,generallymeasurementsondifferentplaneswithdifferentwavelengthsarenotcomparable3Considerations(1)Dispersion(2)Fluorescence(3)Choiceofcrystallographicplane
RadiationSelection
Choiceo
RadiationSelection
ChoiceofX-RayTube
(Wavelength!)
Wecanmeasurethestressinavarietyofmaterials(i.e.ferrite,austenite,nickel,aluminium,corundumetc)usingthesamediffractometer,bychangingtheX-raytube&consequentlythewavelengthoftheX-rays.MostresidualstressdiffractometerswillhaveaselectionofX-raytubesavailableHowdowechoose?????
RadiationSelection
Choiceo
ChoiceofX-RayTube
(1)Dispersion
Weneeda2angle,ideally>1402Thechangeind-spacing,duetostrain,isverysmall,typicallyinthethirddecimalplaceThedispersionofthediffractionpatternismuchgreaterathigh2angles.Thesmallchangesind-spacingcanonlybedetectedatangles>125°2
ChoiceofX-RayTube
(1)Dis
ChoiceofX-RayTube
(1)Dispersion
AnExample
Ifwehaveareflectionfromferrite{211}at1562.UsingradiationfromachromiumanodeX-raytubeofwavelength2.2897?Ifweintroduceastressof200MPa,givenYoung’smodulusof220GPa,whatisthechangeinthe2angle?Answer,thenew2angleis155.51Thedifferenceis0.48NOTMUCH!!!
ChoiceofX-RayTube
(1)Disp
ChoiceofX-RayTube
(2)SampleFluorescence
IftheK-1componentoftheincidentX-raybeamcausesthesampleemititsownfluorescentX-rays,DONOTUSEITX-raypenetrationdepthwillbeverysmall<5microns&NOTrepresentativeofthebulkPeaktobackgroundratiowillbeterribleMaydamagesensitivedetectors
ChoiceofX-RayTube
(2)Samp
ChoiceofX-RayTube
(3)ChoiceofCrystallographic
Plane
ForaccuratecomparisonwithotherpeoplesdataCHECKwhichplaneshavebeenusedhistorically!!MeasurementsmadeonplaneswithdifferentMiller{hkl}indicesarenotusuallycomparable.Ifthesampleistextured(preferredorientation)selectasetofplaneswithahighmultiplicity
ChoiceofX-RayTube
(3)ChoiChoiceofMeasurement
Conditions:SummaryAsksomeonewhohasexperiencewiththatparticularmaterialDon’tre-inventthewheelChooseradiationtypecarefullyAvoidX-raytubeswhichcauseK-1fluorescenceLot’sof“tricksofthetrade”seetheNPLGoodPracticeGuideforResidualStressMeasurementsusingthesin2MethodChoiceofMeasurement
ConditiDataCollection
PositioningtheSampleSamplemustbecentreofrotationofthegoniometer,mostinstrumentshavedepthgaugeorapointerBecarefulthatthesampleisasflataspossible,bentsampleswillgiveartificialshearstressesForcurvedandunevensamplesrestricttheirradiatedareaHoopdirection,Spotsize<R/4,whereR=radiusofcurvatureAxialdirection,Spotsize<R/2DataCollection
PositioningthDataCollection
Makesurethatyoucollectdataoverasufficient2range!Includethebackgroundonbothsidesofthepeak.Canbedifficultasinelasticisusuallypresent&thiscausespeakbroadening.Peakscanbeupto102Countforasufficienttimetoensureadequatestatistics,need>1000countatthetopofthepeakifpossibleDataCollection
MakesurethatDataProcessingALWAYSCHECKTHISSTAGENeedaprogramwithgoodgraphicsStagesinthedataprocessingBackgroundstrippingK-2stripping(onlyifK-2peakisvisible)LorentzPolarisationCorrectionPeakfittingtolocatemaximumCriticalStage,checktheresultsonthescreen.Avarietyofpeakmodelsareavailablemostofwhichwillwork.UsuallyuseGaussian,don’tuseparabolaGoodqualitydatacanbefittedwithmostmodels,thisisagoodtest!DataProcessingALWAYSCHECKTHHowPrecisearethe
ResultsGenerallythere’salotofscatteronsin2plots!TheerrorbarsprintedoutbymostPC’sarejustthestandarddeviationofthepointsfromthefittedlineandtendunderestimatetheerrorsLargeerrorbarsarenotnecessarilyunacceptableandaredueto,Texture,largegrainsize,poorpeakfittingetcForexample,20050MPaisquitenormalCheckthepeaksonthescreen!Valuesoflessthan50MPa,canusuallybethoughtofaszero,thisdependsontheinstrument
Toconfirmsuchlowreadingsmakeseveralmeasurements&seeiftheyallcomeoutwiththesamesign(i.e.allcompressive)HowPrecisearethe
ResultsGeInstrumentMisalignment-Omega-2misalignments-Omega-misalignments(sideinclinationmethod)Instrumentmisalignmentcauses,ShiftsinthepositionsofthereflectionsandincorrectstressvaluesThepositiveandnegativemeasurementsgivedifferentpeakpositions,thisiscalledsplittingWemustmeasureatleasttwostandardstoverifythatthemachineisworkingcorrectlyInstrumentMisalignment-OmegaInstrumentMisalignment-RecommendedStandardsAstressfreepowderNotaneasythingtomakeBewarestressesduetofilingandoxidationCanbecombinedwithresinforeaseofuseAstressedstandardBecareful,alwaysmeasureinthesamedirectionShotpeenedsamplesaregoodUsuallyverifiedbyRound-RobintestsNocertifiedstandards(???)OnesetforeachtubeanodeInstrumentMisalignment-RecomAtypicalExampleofa
StressProfileina
ShotPeenedSampleAshotpeenedsurface,depthprofiledbyElectro-polishing
AtypicalExampleofa
StressProblems!!!Goodone,thematerialhasasmallgrainsize(<100)isisotropic,ratherthantextured&there’snoshearstress.Ideal!Texture,the“wiggle”OursampleisnotisotropicShearStress,thepositive&negativeplotssplitProblems!!!Goodone,themaShearStresses
sin2SplittingPositiveandnegativegivedifferentresultswhenashearstressispresent(orsampleisnotcorrectlypositioned,alwayscheck!)FunctionofthedirectionofthemeasurementShearStresses
sin2SplittingConclusionsThesin2
methodworkswellifyouarecarefulChecktoseewhat’sbeendonebyothersDon’treinventthewheelChooseyouX-raytubewithcarePositionthesamplecarefullyThinkaboutthedirectionsyouwishtomeasureMeasureasufficientrangeof2&countforasufficienttimeCheckyoupeakfittingDotheresultsmakesense?????? ConclusionsThesin2methodwThankYou&Happy
Landings!
ThankYou&Happy
Landings!
BSSMWorkshop
PARTII
Thesin2ψMethodUsingLaboratoryX-Rays
JudithShackleton
SchoolofMaterials,UniversityofManchesterBSSMWorkshop
PARTII
Thesin2Thesin2ψMethod
WhatareWeMeasuring?WemeasuretheELASTICStrain.WecandetermineMagnitudeofthestress,ItsdirectionItsnature CompressiveortensileWeusetheplanesofthecrystallatticeasanatomicscale“straingauge”Thesin2ψMethod
WhatareWeThesin2ψMethod
HowDoesitWork?WemeasureSTRAIN()notSTRESS()WeCALCULTESTRESSfromtheSTRAIN&theELASTICCONSTANTSWeusetheplanesd{hkl},ofthecrystallatticeasastraingaugeWecanmeasurethechangeind-spacing,dStrain==d/dThesin2ψMethod
HowDoesitChangesind-spacing
withStressConsiderabarwhichisintensionThed-spacingsoftheplanesnormaltotheappliedstressincrease,asthestressistensileThed-spacingsoftheplanesparalleltotheappliedstressdecrease,duetoPoissonstrainChangesind-spacing
withStrMeasuringElastic&
Inelastic
StrainPrimarilywearemeasuringmacrostressesThisisauniformdisplacementofthelatticeplanesThesecauseaVERYSMALLshiftintheposition,theBraggangle2,ofthereflection&wecanmeasurethis(OnlyJust!!)Inelasticstressescausepeakbroadening,whichcanbemeasured.Thisisanextensivesubject,notcoveredhere.MeasuringElastic&
InelastiWhichMaterialsCan
WeMeasure?Worksonanypoly-crystallinesolidwhichgivesahighangleBraggreflectionMetalsCeramics(noteasy!)Multi-phasematerialsNotusuallyappliedtopolymers,asnosuitablereflections,canaddametallicpowder,reportedintheliteratureWhichMaterialsCan
WeMeasurWhyusethesin2
Method
TheAdvantagesMostImportantAstressfreed-spacingisNOTrequiredforthebi-axialcasewhichisalmostalwaysusedOtheradvantagesLowcost(comparedwithneutrons&synchrotrons,butnotholedrilling)Non-destructive,unlikeholedrillingEasytodo&fairlyfoolproof(ifyouarecareful!!)Whyusethesin2
Method
TheDisadvantagesMostImportantSurfacemethodonly,X-raybeampenetrationdepth10to20microns,atbestFordepthprofilingmustelectro-polish,gives1-1.5mmOtherDisadvantagesAffectedbygrainsize,texture(preferredorientation)&surfaceroughnessDoesn’tworkonamorphousmaterials(obviously!!)DisadvantagesMostImportantBasicTheoryConsideraunitcube(quiteabigone!)embeddedinacomponentNotation,(ij)thestresscomponentactingonfaceiindirection(paralleltoaxis)jBasicTheoryConsideraunitcuBasicTheoryThenormalstressesactnormaltothecubefaces&thetwosubscriptsarethesamee.g..(22)Theshearstresses(twistingforces)actparalleltothecubefaces&thetwosubscriptsaredifferente.g.(31)orinthegeneralcase(ij)Wemeasurenormalstresses&shearstresses,butthat’snotwhatwewant,wedon’tgetalloftheinformation!Why??BasicTheoryBasicTheory
NormalStressesFromelastictheoryofisotropicmaterials,the3normalstrainsaregivenby, 11=1 [11-(22+33)]
E 22=1 [22-(33+11)]
E 33=1 [33-(11+22)]
EThestraininanydirectionisafunctionofthestressintheothers!!.Ideally,weshouldmeasuremorethanonedirectionBasicTheory
NormalStressesFrPrincipalStressesWeshouldmeasuremorethanonedirectiontogetacompletepictureofthestressinthecomponentIfwemeasure3directionsormorewecancalculatethePRINCIPALSTRESSESS,thesearethedirectionsonwhichnoshearstressactsWedothisbyrotatingthesamplethroughanangle,initsownplane,exactdetails&diagramslaterPrincipalStressesWeshouldmeHowtheSin2Method
Works
Samplein“BraggCondition”Diffractionvector,normaltosamplesurfacednWemeasurethed-spacingwiththeangleofincidence()&theangleofreflectionoftheX-raybeam(withrespecttothesamplesurface)equal.Theseplanesareparalleltothefreesurface&unstressed,butnotunstrainedAlsocalledfocussedgeometryHowtheSin2Method
Works
SaHowtheSin2Method
WorksDiffractionvector,titledwithrespecttosamplesurfaceTiltthesamplethroughanangleandmeasurethed-spacingagain.Theseplanesarenotparalleltothefreesurface.Theird-spacingischangedbythestressinthesample.dDefocusedgeometryHowtheSin2Method
WorksDifHowtheSin2Method
WorksWetiltthesamplethroughananglepsi,tomeasuremagnitudethenormal&shearstressesWeusearangeofvaluesof(calledoffsets)forexample,from0to45instepsof5NEVERusethe“DoubleExposureMethod”whichusesjustoneoffsets.Notenoughdatapoints!Werotatethethesamplethroughanangle,todeterminethedirectionsoftheprinciplestressesHowtheSin2Method
WorksWeNoStressFreed-Spacing
Needed
TheApproximationThedepthofpenetrationoftheX-raybeaminthesampleissmall,typically<20Wecansaythatthereisnostresscomponentperpendiculartothesamplesurface,thatis33=0Wecanusethed-spacingmeasuredat=0asthestressfreed-spacingThisisthed-spacingoftheplanesparalleltothesamplesurfaceAreasonableapproximation!!Theerroris<2%,certainlylessthantryingtomakeastressfreestandard!!!NoStressFreed-Spacing
NeedTheEquationforthe
sin2
MethodThesimplestformoftheequationis, = E d-dn (1+)sin2 dnWere=StressindirectionE=Young’smodulus(GPa)=Poisson’sratio=Tiltangle(degrees)d=d-spacingmeasuredattiltangle,(?)dn=The“stressfreed-spacing”fromourapproximation measuredat=0(?)StrainTermTheEquationforthe
sin2MeThesin2Plot:TheResults!dnisobtainedbyextrapolatingaplotofd
(orstrain)againstsin2to=0Stressisobtainedfromthegradient,mofthesin2plot = E m (1+)Ifthed-spacingdecreases,thestressiscompressive(planespushedtogether)Ifthed-spacingincreasesthestressistensile(planespulledapart)Thesin2Plot:TheResults!Thesin2Plot:Example
WecanplotSTRAINagainstsin2&obtaintheSTRESSfromthegradientThesin2Plot:ExampleWecaThesin2Plot:ExampleAlso,wecanplotd{hkl}againstsin2&obtainthestressfromthegradient,whichisthesameonbothplotsThesin2Plot:ExampleAlso,General:Stress
DiffractometersBasicallyadaptedpowderdiffractometersCanaccommodatelarger,heaviersamplesMaximumaccessible2angleislargerUsuallyabout1652(checkthisifyoubuyone!!!)Moreaxesofrotationthanastandardpowderdiffractometer,omegaand2canmoveindependentlyGeneral:Stress
DiffractometeThereareTwoBasicTypesLaboratoryBasedSystemsFixedlocationCanusuallybeusedforotherapplications,forexamplephaseidentificationPortablesystemsDesignedspecificallyforresidualstressmeasurementsCancarriedandfixedtoalargecomponent(aircraft!)ThereareTwoBasicTypesLaborDiffractionAnglesused
inStressAnalysisDiffractionAnglesused
inStDiffractionGeometry
SummaryoftheAnglesUsedin
ResidualStressAnalysis
Two-theta(2)
TheBraggangle,anglebetweentheincident(transmitted)anddiffractedX-raybeams.Omega()TheanglebetweentheincidenceX-raybeamandthesamplesurface.Bothomegaandtwo-thetarotateinthesameplane.Phi()Theangleofrotationofthesampleaboutit’ssurfacenormal.Psi()
Anglesthroughwhichthesampleisrotated,inthesin2method.Westartatpsi=0,whereomegaishalfoftwo-thetaandadd(orsubtract)successivepsioffsets,forexample,10,20,30and40Chi()Angleofrotationabouttheaxisoftheincidentbeam.Chirotatesintheplanenormaltothatcontainingomegaandtwo-theta.Thisangleisalsosometimes(confusingly)referredtoasDiffractionGeometry
SummaryoInstrumentation
TheOmegaMethod
PortableSystemsInstrumentation
TheOmegaMethInstrumentationanExample
ofaPortableSystem,Manchester’s
Protoi-XRDInstrumentationanExample
of
DecidingWhattodo?
Weneedtodecidehowtomakeourmeasurements,weneedtomakesomechoices,WhichX-raytubetouse?Whichcrystallographicplanedowechoose?Thebestthingtodoiscopywhatsomeoneelsehasdone!YourresultswillbecomparablewiththosemadebyotherworkersManyIndustrieshave“set”methods
DecidingWhattodo?
Weneed
RadiationSelection
ChoiceofX-RayTube
(Wavelength!)
ALWAYScheckwhatotherpeoplehavedoneinthepastas,generallymeasurementsondifferentplaneswithdifferentwavelengthsarenotcomparable3Considerations(1)Dispersion(2)Fluorescence(3)Choiceofcrystallographicplane
RadiationSelection
Choiceo
RadiationSelection
ChoiceofX-RayTube
(Wavelength!)
Wecanmeasurethestressinavarietyofmaterials(i.e.ferrite,austenite,nickel,aluminium,corundumetc)usingthesamediffractometer,bychangingtheX-raytube&consequentlythewavelengthoftheX-rays.MostresidualstressdiffractometerswillhaveaselectionofX-raytubesavailableHowdowechoose?????
RadiationSelection
Choiceo
ChoiceofX-RayTube
(1)Dispersion
Weneeda2angle,ideally>1402Thechangeind-spacing,duetostrain,isverysmall,typicallyinthethirddecimalplaceThedispersionofthediffractionpatternismuchgreaterathigh2angles.Thesmallchangesind-spacingcanonlybedetectedatangles>125°2
ChoiceofX-RayTube
(1)Dis
ChoiceofX-RayTube
(1)Dispersion
AnExample
Ifwehaveareflectionfromferrite{211}at1562.UsingradiationfromachromiumanodeX-raytubeofwavelength2.2897?Ifweintroduceastressof200MPa,givenYoung’smodulusof220GPa,whatisthechangeinthe2angle?Answer,thenew2angleis155.51Thedifferenceis0.48NOTMUCH!!!
ChoiceofX-RayTube
(1)Disp
ChoiceofX-RayTube
(2)SampleFluorescence
IftheK-1componentoftheincidentX-raybeamcausesthesampleemititsownfluorescentX-rays,DONOTUSEITX-raypenetrationdepthwillbeverysmall<5microns&NOTrepresentativeofthebulkPeaktobackgroundratiowillbeterribleMaydamagesensitivedetectors
ChoiceofX-RayTube
(2)Samp
ChoiceofX-RayTube
(3)ChoiceofCrystallographic
Plane
ForaccuratecomparisonwithotherpeoplesdataCHECKwhichplaneshavebeenusedhistorically!!MeasurementsmadeonplaneswithdifferentMiller{hkl}indicesarenotusuallycomparable.Ifthesampleistextured(preferredorientation)selectasetofplaneswithahighmultiplicity
ChoiceofX-RayTube
(3)ChoiChoiceofMeasurement
Conditions:SummaryAsksomeonewhohasexperiencewiththatparticularmaterialDon’tre-inventthewheelChooseradiationtypecarefullyAvoidX-raytubeswhichcauseK-1fluorescenceLot’sof“tricksofthetrade”seetheNPLGoodPracticeGuideforResidualStressMeasurementsusingthesin2MethodChoiceofMeasurement
ConditiDataCollection
PositioningtheSampleSamplemustbecentreofrotationofthegoniometer,mostinstrumentshavedepthgaugeorapointerBecarefulthatthesampleisasflataspossib
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中生涯規劃與數學學科邏輯推理能力培養研究論文
- 歷史文化遺址保護教育對初中生歷史實踐能力培養的作用研究論文
- 節能節水等管理制度
- 英語培訓班管理制度
- 茶館俱樂部管理制度
- 低壓成套開關設備和控制設備設計規范書
- 趕集網簡介服務類-媒體資源網-中國權威的廣告媒體交易平臺
- 2025年廣東省深圳市南山第二外國語學校(集團)學府中學中考數學三模試卷
- 綠色卡通插畫綠植奇妙的種子認識種子主題
- 山東省青島市城陽區2024-2025學年九年級下學期期中歷史試題(含答案)
- 2025年廣東省廣州市白云區中考語文二模試卷
- 2025年天津市河西區中考二模數學試題(含部分答案)
- 醫院培訓課件:《藥品不良反應報告和監測工作簡介》
- 2025 屆九年級初三畢業典禮校長講話:星河長明共赴新程
- 2025年伽師縣(中小學、幼兒園)教師招聘考試模擬試題及答案
- 醫院培訓中心管理制度
- GM/T 0009-2023SM2密碼算法使用規范
- 中等職業教育與普通高中教育融合發展路徑研究
- 網約車轉讓合同協議書
- 2025年小學畢業生語文考試試題及答案
- 2025年河北省中考乾坤押題卷物理試卷B及答案
評論
0/150
提交評論