




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,公園中一正方形水池中有一噴泉,噴出的水流呈拋物線狀,測得噴出口高出水面0.8m,水流在離噴出口的水平距離1.25m處達到最高,密集的水滴在水面上形成了一個半徑為3m的圓,考慮到出水口過高影響美觀,水滴落水形成的圓半徑過大容易造成水滴外濺到池外,現決定通過降低出水口的高度,使落水形成的圓半徑為2.75m,則應把出水口的高度調節為高出水面()A.0.55米 B.米 C.米 D.0.4米2.設有12只型號相同的杯子,其中一等品7只,二等品2只,三等品3只。則從中任意取一只,是二等品的概率等于()A. B. C. D.3.某種藥品原價為36元/盒,經過連續兩次降價后售價為25元/盒.設平均每次降價的百分率為x,根據題意所列方程正確的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=254.如圖,、、是的切線,、、是切點,分別交、于、兩點.如,則的度數為()A. B. C. D.5.如圖,中,,,,則的長為()A. B. C.5 D.6.如圖,拋物線的對稱軸為,且過點,有下列結論:①>0;②>0;③;④>0.其中正確的結論是()A.①③ B.①④ C.①② D.②④7.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=35°,則∠OAC的度數是()A.35° B.55° C.65° D.70°8.二次函數圖象的頂點坐標是()A. B. C. D.9.△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為()A. B. C. D.10.下列標志既是軸對稱圖形又是中心對稱圖形的是().A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,則cos∠AOB的值等于___________.12.已知p,q都是正整數,方程7x2﹣px+2009q=0的兩個根都是質數,則p+q=_____.13.計算:sin45°·cos30°+3tan60°=_______________.14.二次函數圖象的開口向__________.15.半徑為4cm,圓心角為60°的扇形的面積為cm1.16.已知為銳角,且,那么等于_____________.17.將函數y=5x2的圖象向左平移2個單位,再向上平移3個單位,所得拋物線對應函數的表達式為__________.18.已知銳角α,滿足tanα=2,則sinα=_____.三、解答題(共66分)19.(10分)在矩形ABCD中,AB=3,AD=5,E是射線DC上的點,連接AE,將△ADE沿直線AE翻折得△AFE.(1)如圖①,點F恰好在BC上,求證:△ABF∽△FCE;(2)如圖②,點F在矩形ABCD內,連接CF,若DE=1,求△EFC的面積;(3)若以點E、F、C為頂點的三角形是直角三角形,則DE的長為.20.(6分)有三張卡片(形狀、大小、質地都相同),正面分別寫上整式.將這三張卡片背面向上洗勻,從中隨機抽取一張卡片,再從剩下的卡片中隨機抽取另一張.第一次抽取的卡片正面的整式作為分子,第二次抽取的卡片正面的整式作為分母.(1)請寫出抽取兩張卡片的所有等可能結果(用樹狀圖或列表法求解);(2)試求抽取的兩張卡片結果能組成分式的概率.21.(6分)拋物線經過點O(0,0)與點A(4,0),頂點為點P,且最小值為-1.(1)求拋物線的表達式;(1)過點O作PA的平行線交拋物線對稱軸于點M,交拋物線于另一點N,求ON的長;(3)拋物線上是否存在一個點E,過點E作x軸的垂線,垂足為點F,使得△EFO∽△AMN,若存在,試求出點E的坐標;若不存在請說明理由.22.(8分)某校九年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為每千克8元,下面是他們在活動結束后的對話.小麗;如果以每千克10元的價格銷售,那么每天可售出300千克.小強:如果每千克的利潤為3元,那么每天可售出250千克.小紅:如果以每千克13元的價格銷售,那么每天可獲取利潤750元.(1)已知該水果每天的銷售量y(千克)與銷售單價x(元)之間存在一次的函數關系,請根據他們的對話,判決該水果每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數關系,并求出這個函數關系式;(2)設該超市銷售這種水果每天獲取的利潤為W(元),求W(元)與x(元)之間的函數關系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?(3)當銷售利潤為600元并且盡量減少庫存時,銷售單價為每千克多少元?23.(8分)某校舉行秋季運動會,甲、乙兩人報名參加100m比賽,預賽分A、B、C三組進行,運動員通過抽簽決定分組.(1)甲分到A組的概率為;(2)求甲、乙恰好分到同一組的概率.24.(8分)將矩形紙片沿翻折,使點落在線段上,對應的點為,若,求的長.25.(10分)已知拋物線經過點和,與軸交于另一點,頂點為.(1)求拋物線的解析式,并寫出點的坐標;(2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;(3)若點在拋物線上,且,試確定滿足條件的點的個數.26.(10分)計算:(1)解不等式組(2)化簡:
參考答案一、選擇題(每小題3分,共30分)1、B【分析】如圖,以O為原點,建立平面直角坐標系,由題意得到對稱軸為x=1.25=,A(0,0.8),C(3,0),列方程組求得函數解析式,即可得到結論.【詳解】解:如圖,以O為原點,建立平面直角坐標系,由題意得,對稱軸為x=1.25=,A(0,0.8),C(3,0),設解析式為y=ax2+bx+c,∴,解得:,所以解析式為:y=x2+x+,當x=2.75時,y=,∴使落水形成的圓半徑為2.75m,則應把出水口的高度調節為高出水面08﹣=,故選:B.【點睛】本題考查了二次函數的實際應用,根據題意建立合適的坐標系,找到點的坐標,用待定系數法解出函數解析式是解題的關鍵2、B【分析】讓二等品數除以總產品數即為所求的概率.【詳解】解:∵現有12只型號相同的杯子,其中一等品7只,二等品2只,三等品3只,從中任意取1只,可能出現12種結果,是二等品的有2種可能,∴二等品的概率.故選:B.【點睛】本題主要考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.3、C【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應數值代入即可求解.【詳解】解:第一次降價后的價格為36×(1﹣x),兩次連續降價后售價在第一次降價后的價格的基礎上降低x,為36×(1﹣x)×(1﹣x),則列出的方程是36×(1﹣x)2=1.故選:C.【點睛】考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.4、C【分析】連接OA、OB、OE,由切線的性質可求出∠AOB,再由切線長定理可得出∠COD=∠AOB,可求得答案.【詳解】解:連接OA、OE、OB,所得圖形如下:由切線性質得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,∴△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∵∠APB=40°,∴∠AOB=140°,∴∠COD=70°.【點睛】本題考查了切線的性質及切線長定理,解答本題的關鍵是熟練掌握:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.5、C【解析】過C作CD⊥AB于D,根據含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點睛】本題考查解直角三角形.6、C【分析】根據拋物線的開口方向、對稱軸、與y軸的交點判定系數符號及運用一些特殊點解答問題.【詳解】由拋物線的開口向下可得:a<0,
根據拋物線的對稱軸在y軸左邊可得:a,b同號,所以b<0,
根據拋物線與y軸的交點在正半軸可得:c>0,
∴abc>0,故①正確;
直線x=-1是拋物線y=ax2+bx+c(a≠0)的對稱軸,所以-=-1,可得b=2a,
a-2b+4c=a-4a+4c=-3a+4c,
∵a<0,
∴-3a>0,
∴-3a+4c>0,
即a-2b+4c>0,故②正確;
∵b=2a,a+b+c<0,
∴2a+b≠0,故③錯誤;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④錯誤;
故選:C.【點睛】此題考查二次函數圖象與系數的關系,掌握二次函數的性質、靈活運用數形結合思想是解題的關鍵,解答時,要熟練運用拋物線的對稱性和拋物線上的點的坐標滿足拋物線的解析式.7、B【解析】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°-∠AOC)÷2=110°÷2=55°.故選B.8、A【分析】根據二次函數頂點式即可得出頂點坐標.【詳解】∵,∴二次函數圖像頂點坐標為:.故答案為A.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).9、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點M,由垂徑定理可得M為AE的中點,在Rt△ACM中,根據勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
過C作CM⊥AB,交AB于點M,如圖所示,
由垂徑定理可得M為AE的中點,
∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根據勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故選:C.【點睛】本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.10、B【分析】根據軸對稱圖形與中心對稱圖形的定義解答.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是中心對稱圖形,不是軸對稱圖形;D、是軸對稱圖形,不是中心對稱圖形.故選:B.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、填空題(每小題3分,共24分)11、.【解析】試題分析:根據作圖可以證明△AOB是等邊三角形,則∠AOB=60°,據此即可求解.試題解析:連接AB,由畫圖可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB為等邊三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.考點:1.特殊角的三角函數值;2.等邊三角形的判定與性質.12、337【分析】利用一元二次方程根與系數的關系,得出有關p,q的式子,再利用兩個根都是質數,可分析得出結果.【詳解】解:x1+x2=,x1x2==287q=7×41×q,x1和x2都是質數,則只有x1和x2是7和41,而q=1,所以7+41=,p=336,所以p+q=337,故答案為:337.【點睛】此題考查了一元二次方程根與系數的關系以及質數的概念,題目比較典型.13、【分析】先求出各個特殊角度的三角函數值,然后計算即可【詳解】∵∴原式=故答案為【點睛】本題考查特殊角度的三角函數值,熟記特殊角度的三角函數值是解題的關鍵。14、下【分析】根據二次函數的二次項系數即可判斷拋物線的開口方向.【詳解】解:∵,二次項系數a=-6,∴拋物線開口向下,故答案為:下.【點睛】本題考查二次函數的性質.對于二次函數y=ax2+bx+c(a≠0),當a>0時,拋物線開口向上,當a<0時,拋物線開口向下.15、.【解析】試題分析:根據扇形的面積公式求解.試題解析:.考點:扇形的面積公式.16、【分析】根據特殊角的三角函數值即可求出答案.【詳解】故答案為:.【點睛】本題主要考查特殊角的三角函數值,掌握特殊角的三角函數值是解題的關鍵.17、y=5(x+2)2+3【分析】根據二次函數平移的法則求解即可.【詳解】解:由二次函數平移的法則“左加右減”可知,二次函數y=5x2的圖象向左平移2個單位得到y=,由“上加下減”的原則可知,將二次函數y=的圖象向上平移3個單位可得到函數y=,故答案是:y=.【點睛】本題主要考查二次函數平移的法則,其中口訣是:“左加右減”、“上加下減”,注意數字加減的位置.18、【解析】分析:根據銳角三角函數的定義,可得答案.詳解:如圖,由tanα==2,得a=2b,由勾股定理,得:c==b,sinα===.故答案為.點睛:本題考查了銳角三角函數,利用銳角三角函數的定義解題的關鍵.三、解答題(共66分)19、(1)證明見解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,證明∠CEF=∠AFB,即可解決問題;(2)過點F作FG⊥DC交DC與點G,交AB于點H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①當∠EFC=90°時;②當∠ECF=90°時;③當∠CEF=90°時三種情況討論解答即可.【詳解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折疊可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:過點F作FG⊥DC交DC與點G,交AB于點H,則∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折疊可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴=∴=∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5GF)2+(5-GF)2=52∴GF=∴△EFC的面積為××2=;(3)解:①當∠EFC=90°時,A、F、C共線,如圖所示:設DE=EF=x,則CE=3-x,∵AC=,∴CF=-x,∵∠CFE=∠D=90°,∠DCA=∠DCA,∴△CEF∽△CAD,∴,即,解得:ED=x=;②當∠ECF=90°時,如圖所示:∵AD==5,AB=3,∴==4,設=x,則=3-x,∵∠DCB=∠ABC=90°,∴∽,∴,即,解得:x==;由折疊可得:,設,則,,在RT△中,∵,即92+x2=(x+3)2,解得x==12,∴;③當∠CEF=90°時,AD=AF,此時四邊形AFED是正方形,∴AF=AD=DE=5,綜上所述,DE的長為:、5、15、.【點睛】本題考查了翻折的性質,相似三角形的判定與性質,勾股定理,掌握翻折的性質,分類探討的思想方法是解決問題的關鍵.20、(1)見解析;(2)【分析】(1)用樹狀圖或列表法把所有的情況表示出來即可;(2)根據樹狀圖找到所有的情況數以及能組成分式的情況數,利用能組成分式的情況數與總數之比求概率即可.【詳解】(1)樹狀圖如下:(2)總共有6種情況,其中能組成分式的有4種,所以(組成分式)【點睛】本題主要考查用樹狀圖或列表法求隨機事件的概率,掌握樹狀圖或列表法和概率公式是解題的關鍵.21、(1)拋物線的表達式為,(或);(1);(3)拋物線上存在點E,使得△EFO∽△AMN,這樣的點共有1個,分別是(,)和(,).【分析】(1)由點O(0,0)與點A(4,0)的縱坐標相等,可知點O、A是拋物線上的一對對稱點,所以對稱軸為直線x=1,又因為最小值是-1,所以頂點為(1,-1),利用頂點式即可用待定系數法求解;(1)設拋物線對稱軸交軸于點D、N(,),先求出=45°,由ON∥PA,依據平行線的性質得到=45°,依據等腰直角三角形兩直角邊的關系可得到=,解出即可得到點N的坐標,再運用勾股定理求出ON的長度;(3)先運用勾股定理求出AM和OM,再用ON-OM得MN,運用相似三角形的性質得到EF:FO的值,設E(,),分點E在第一象限、第二或四象限討論,依據EF:FO=1:1列出關于m的方程解出即可.【詳解】解:(1)∵拋物線經過點O(0,0)與點A(4,0),∴對稱軸為直線x=1,又∵頂點為點P,且最小值為-1,,∴頂點P(1,-1),∴設拋物線的表達式為將O(0,0)坐標代入,解得∴拋物線的表達式為,即;(1)設拋物線對稱軸交軸于點D,∵頂點P坐標為(1,-1),∴點D坐標為(1,0)又∵A(4,0),∴△ADP是以為直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若設點N的坐標為(,)則=解得,∴點N的坐標為(,)∴(3)拋物線上存在一個點E,使得△EFO∽△AMN,理由如下:連接PO、AM,∵=45°,=90°,∴,又∵由點D坐標為(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1設點E的坐標為(,)(其中),①當點E在第一象限時,,解得,此時點E的坐標為(,),②當點E在第二象限或第四象限時,,解得,此時點E的坐標為(,)綜上所述,拋物線上存在一個點E,使得△EFO∽△AMN,這樣的點共有1個,分別是(,)和(,).【點睛】本題是二次函數綜合題,考查了運用待定系數法求解析式,運用勾股定理求線段長度,二次函數中相似的存在性問題,解題的關鍵是用點的坐標求出線段長度,并根據線段之間的關系,建立方程解出得到點的坐標.22、(1)y=﹣50x+800(x>0);(2)單價為12元時,每天可獲得的利潤最大,最大利潤是800元;(3)每千克10元或14元.【解析】本題是通過構建函數模型解答銷售利潤的問題.依據題意首先確定學生對話中一次函數關系;然后根據銷售利潤=銷售量×(售價-進價),列出平均每天的銷售利潤w(元)與銷售價x之間的函數關系,再依據函數的增減性求得最大利潤.【詳解】(1)當銷售單價為13元/千克時,銷售量為:750÷(13﹣8)=150千克,設:y與x的函數關系式為:y=kx+b(k≠0)把(10,300),(13,150)分別代入得:k=﹣50,b=800∴y與x的函數關系式為:y=﹣50x+800(x>0).(2)∵利潤=銷售量×(銷售單價﹣進價),由題意得∴W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴當銷售單價為12元時,每天可獲得的利潤最大,最大利潤是800元.(3)將w=600代入二次函數W=(﹣50x+800)(x﹣8)=600解得:x1=10,x2=14即:當銷售利潤為600元時,銷售單價為每千克10元或14元.【點睛】本題考查了二次函數的性質在實際生活中的應用.最大銷售利潤的問題常利用函數的增減性來解答,我們首先要讀懂題意,確定變量,建立函數模型,然后結合實際選擇最優方案.23、(1);(2)【分析】(1)直接利用概率公式求出甲分到A組的概率;(2)將所有情況列出,找出滿足條件:甲、乙恰好分到同一組的情況有幾種,計算出概率.【詳解】解:(1)(2)甲乙兩人抽簽分組所有可能出現的結果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9種,它們出現的可能性相同.所有的結果中,滿足“甲乙分到同一組”(記為事件A)的結果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安全工程師考試應急管理及事故調查模擬試卷
- 兒童營養需求與飲食指南
- 2025年場(廠)內專用機動車輛維修人員考試試卷(汽車維修行業品牌知名度提升策略研究)
- 2025年勞動保障協理員(初級)考試試卷:勞動保障基礎知識與社會保障法規應用案例分析集
- 2025年風力發電項目提案報告范文
- 2025年電子商務師(中級)職業技能鑒定試卷:電子商務平臺數據分析與客戶行為預測試題
- 農村家庭農場的經營管理協議
- 2025年消防工程師考試題庫-消防設施設備選型與防火分區試題
- 大貨車司機聘用協議
- 2025年輔導員招聘考試題庫:校園文化建設案例分析與評估試題
- 車給別人開的協議書
- 離散裝配行業MES案例
- 1.3探索三角形全等的條件第7課時 蘇科版八年級數學上冊
- 蘇教版四年級科學下冊復習方法
- 南昌市產業投資集團有限公司人才招聘筆試真題2023
- GB/T 4706.11-2024家用和類似用途電器的安全第11部分:快熱式熱水器的特殊要求
- 壯族文化宣傳介飲食服飾建筑風俗習慣特點傳統節日課件
- 牛津譯林版英語八年級下冊期末復習各單元話題寫作范文背誦
- 2024CSCO胃腸間質瘤診療指南解讀
- FZ∕T 61002-2019 化纖仿毛毛毯
- GB/T 3880.3-2024一般工業用鋁及鋁合金板、帶材第3部分:尺寸偏差
評論
0/150
提交評論