2023屆上海奉賢區高三沖刺模擬數學試卷含解析_第1頁
2023屆上海奉賢區高三沖刺模擬數學試卷含解析_第2頁
2023屆上海奉賢區高三沖刺模擬數學試卷含解析_第3頁
2023屆上海奉賢區高三沖刺模擬數學試卷含解析_第4頁
2023屆上海奉賢區高三沖刺模擬數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是虛數單位,若,則()A. B.2 C. D.32.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形3.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.4.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件5.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.6.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.7.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題8.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.10.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.11.定義在上的函數滿足,則()A.-1 B.0 C.1 D.212.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當取最大值時,該圓的標準方程為______.14.設、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________15.現有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.16.已知向量,滿足,,,則向量在的夾角為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87918.(12分)已知函數,.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數,當時,討論零點的個數.19.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.20.(12分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.21.(12分)己知等差數列的公差,,且,,成等比數列.(1)求使不等式成立的最大自然數n;(2)記數列的前n項和為,求證:.22.(10分)在銳角三角形中,角的對邊分別為.已知成等差數列,成等比數列.(1)求的值;(2)若的面積為求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.2.C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎題.3.B【解析】

設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.4.C【解析】

利用數量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數量積的應用,考查推理能力與計算能力,屬于基礎題.5.A【解析】

執行程序框圖,逐次計算,根據判斷條件終止循環,即可求解,得到答案.【詳解】由題意,執行上述的程序框圖:第1次循環:滿足判斷條件,;第2次循環:滿足判斷條件,;第3次循環:滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環結構的程序框圖的結果的計算與輸出,其中解答中執行程序框圖,逐次計算,根據判斷條件終止循環是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.6.B【解析】

根據三角函數定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數定義,和差公式,意在考查學生的計算能力.7.D【解析】

舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導數為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數的圖象與性質,是基礎題.8.C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.9.A【解析】

觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【點睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。10.D【解析】

設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.11.C【解析】

推導出,由此能求出的值.【詳解】∵定義在上的函數滿足,∴,故選C.【點睛】本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.12.A【解析】

根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設圓的圓心坐標,到直線的距離等于半徑,再由均值不等式可得的最大值時圓心的坐標,進而求出圓的標準方程.【詳解】設圓的半徑為,由題意可得,所以,由題意設圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當且僅當時取等號,可得,所以圓心坐標為:,半徑為,所以圓的標準方程為:.故答案為:.【點睛】本題考查直線與圓的位置關系及均值不等式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意驗正等號成立的條件.14.【解析】

由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯立,求出弦長,利用定義可得,進而求出。【詳解】由知,焦點,所以直線:,代入得,即,設,,故由定義有,,所以。【點睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質、以及直線與橢圓位置關系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。15.【解析】

由題意容積,求導研究單調性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導數在實際問題中的應用,考查了學生數學建模,轉化劃歸,數學運算的能力,屬于中檔題.16.【解析】

把平方利用數量積的運算化簡即得解.【詳解】因為,,,所以,∴,∴,因為所以.故答案為:【點睛】本題主要考查平面向量的數量積的運算法則,考查向量的夾角的計算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)男生人數為人,女生人數55人.(2)列聯表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【解析】

(1)求出男女比例,按比例分配即可;(2)根據題意結合頻率分布表,先求出二聯表中數值,再結合公式計算,利用表格數據對比判斷即可【詳解】(1)因為男生人數:女生人數=900:1100=9:11,所以男生人數為,女生人數100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數為37人,聯表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【點睛】本題考查分層抽樣,獨立性檢驗,熟記公式,正確計算是關鍵,屬于中檔題.18.(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據可解得實數的值;(2)令,,然后對實數進行分類討論,結合和的符號來確定函數的零點個數.【詳解】(1),,設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,,則,,由,得.當時,,此時,函數為增函數;當時,,此時,函數為減函數.,.①當,即當時,函數有一個零點;②當,即當時,函數有兩個零點;③當,即當時,函數有三個零點;④當,即當時,函數有兩個零點;⑤當,即當時,函數只有一個零點.綜上所述,當或時,函數只有一個零點;當或時,函數有兩個零點;當時,函數有三個零點.【點睛】本題考查了利用導數的幾何意義研究切線方程和利用導數研究函數的單調性與極值,關鍵是分類討論思想的應用,屬難題.19.(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.20.(1),單調性見解析;(2)不存在,理由見解析【解析】

(1)由題意得,即可得;求出函數的導數,再根據、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構造函數(),求導后證明即可得解.【詳解】(1)由題可得函數的定義域為且,由,整理得..(ⅰ)當時,易知,,時.故在上單調遞增,在上單調遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.③當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.綜上,當時,在上單調遞增,在單調遞減.當時,在及上單調遞增;在上單調遞減.當時,在上遞增.當時,在及上單調遞增;在上遞減.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論