




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.函數(shù)y=中自變量x的取值范圍是A.x≥0 B.x≥4 C.x≤4 D.x>42.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.3.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個4.在數(shù)軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④5.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+6.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE7.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間8.方程的解是()A. B. C. D.9.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數(shù)為()A.30° B.45° C.50° D.75°10.從標號分別為1,2,3,4,5的5張卡片中隨機抽取1張,下列事件中不可能事件是()A.標號是2 B.標號小于6 C.標號為6 D.標號為偶數(shù)11.點P(1,﹣2)關于y軸對稱的點的坐標是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)12.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.空氣質量指數(shù),簡稱AQI,如果AQI在0~50空氣質量類別為優(yōu),在51~100空氣質量類別為良,在101~150空氣質量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數(shù)分布直方圖如圖所示.已知每天的AQI都是整數(shù),那么空氣質量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為______%.14.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.15.如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF.其中正確的結論有_____.(填序號)16.分解因式8x2y﹣2y=_____.17.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),使AE=CF,連接AF、BE相交于點P,當點E從點A運動到點C時,點P經(jīng)過點的路徑長為__.18.若反比例函數(shù)y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數(shù)學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.20.(6分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.21.(6分)某商場甲、乙兩名業(yè)務員10個月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據(jù)上面的數(shù)據(jù),將下表補充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:結論:人員平均數(shù)(萬元)中位數(shù)(萬元)眾數(shù)(萬元)甲8.28.99.6乙8.28.49.7(1)估計乙業(yè)務員能獲得獎金的月份有______個;(2)可以推斷出_____業(yè)務員的銷售業(yè)績好,理由為_______.(至少從兩個不同的角度說明推斷的合理性)22.(8分)某工廠去年的總收入比總支出多50萬元,計劃今年的總收入比去年增加10%,總支出比去年節(jié)約20%,按計劃今年總收入將比總支出多100萬元.今年的總收入和總支出計劃各是多少萬元?23.(8分)如圖,將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.24.(10分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).25.(10分)計算:4cos30°﹣+20180+|1﹣|26.(12分)《九章算術》中有這樣一道題,原文如下:今有甲乙二人持錢不知其數(shù).甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?大意為:今有甲、乙二人,不知其錢包里有多少錢.若乙把其一半的錢給甲,則甲的錢數(shù)為;若甲把其的錢給乙,則乙的錢數(shù)也能為,問甲、乙各有多少錢?請解答上述問題.27.(12分)先化簡,再求值:()÷,其中a=+1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)二次根式的性質,被開方數(shù)大于等于0,列不等式求解.【詳解】根據(jù)題意得:x﹣1≥0,解得x≥1,則自變量x的取值范圍是x≥1.故選B.【點睛】本題主要考查函數(shù)自變量的取值范圍的知識點,注意:二次根式的被開方數(shù)是非負數(shù).2、C【解析】
連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關鍵.3、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.4、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數(shù)與數(shù)軸的關系5、C【解析】
過點C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.6、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.7、B【解析】
根據(jù),可得答案.【詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【點睛】本題考查了估算無理數(shù)的大小,先確定的大小,在確定答案的范圍.8、D【解析】
按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經(jīng)檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結果要檢驗.9、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.10、C【解析】
利用隨機事件以及必然事件和不可能事件的定義依次分析即可解答.【詳解】選項A、標號是2是隨機事件;選項B、該卡標號小于6是必然事件;選項C、標號為6是不可能事件;選項D、該卡標號是偶數(shù)是隨機事件;故選C.【點睛】本題考查了隨機事件以及必然事件和不可能事件的定義,正確把握相關定義是解題關鍵.11、C【解析】關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),由此可得P(1,﹣2)關于y軸對稱的點的坐標是(﹣1,﹣2),故選C.【點睛】本題考查了關于坐標軸對稱的點的坐標,正確地記住關于坐標軸對稱的點的坐標特征是關鍵.關于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數(shù);關于y軸對稱的點的坐標特點:縱坐標不變,橫坐標互為相反數(shù).12、B【解析】
先用含有x的式子表示2015年的綠化面積,進而用含有x的式子表示2016年的綠化面積,根據(jù)等式關系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應用,找準其中的等式關系式解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、80【解析】【分析】先求出AQI在0~50的頻數(shù),再根據(jù)%,求出百分比.【詳解】由圖可知AQI在0~50的頻數(shù)為10,所以,空氣質量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數(shù)據(jù)的分析.解題關鍵點:從統(tǒng)計圖獲取信息,熟記百分比計算方法.14、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.15、①②③【解析】
(1)由已知條件易得∠A=∠BDF=60°,結合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結論②是正確的;(3)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結合AF=2DF和相似三角形的性質即可證得結論④成立.【詳解】(1)∵四邊形ABCD是菱形,BD=AB,∴AB=BD=BC=DC=DA,∴△ABD和△CBD都是等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,∴△AED≌△DFB,即結論①正確;(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,∴點B、C、D、G四點共圓,∴∠CDN=∠CBM,如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,∴∠CDN=∠CBM=90°,又∵CB=CD,∴△CBM≌△CDN,∴S四邊形BCDG=S四邊形CMGN=2S△CGN,∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°∴GN=CG,CN=CG,∴S△CGN=CG2,∴S四邊形BCDG=2S△CGN,=CG2,即結論②是正確的;(3)如下圖,過點F作FK∥AB交DE于點K,∴△DFK∽△DAE,△GFK∽△GBE,∴,,∵AF=2DF,∴,∵AB=AD,AE=DF,AF=2DF,∴BE=2AE,∴,∴BG=6FG,即結論③成立.綜上所述,本題中正確的結論是:故答案為①②③點睛:本題是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多種幾何圖形的判定與性質的題,題目難度較大,熟悉所涉及圖形的性質和判定方法,作出如圖所示的輔助線是正確解答本題的關鍵.16、2y(2x+1)(2x﹣1)【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.【詳解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案為2y(2x+1)(2x-1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.17、π.【解析】
由等邊三角形的性質證明△AEB≌△CFA可以得出∠APB=120°,點P的路徑是一段弧,由弧線長公式就可以得出結論.【詳解】:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴當AE=CF時,點P的路徑是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
點P的路徑是l=,
故答案為.【點睛】本題考查了等邊三角形的性質的運用,全等三角形的判定及性質的運用,弧線長公式的運用,解題的關鍵是證明三角形全等.18、m>1【解析】∵反比例函數(shù)的圖象在其每個象限內,y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)24.2米(2)超速,理由見解析【解析】
(1)分別在Rt△ADC與Rt△BDC中,利用正切函數(shù),即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.20、2.【解析】
根據(jù)勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC的中線,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,則AD⊥BC,又∵CD=BD,∴AC=AB=2.【點睛】本題考核知識點:勾股定理、全等三角形、垂直平分線.解題關鍵點:熟記相關性質,證線段相等.21、填表見解析;(1)6;(2)甲;甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.【解析】
(1)月銷售額在8.0萬元及以上可以獲得獎金,去銷售額中找到乙大于8.0的個數(shù)即可解題,(2)根據(jù)中位數(shù)和平均數(shù)即可解題.【詳解】解:如圖,銷售額數(shù)量x人員4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙013024(1)估計乙業(yè)務員能獲得獎金的月份有6個;(2)可以推斷出甲業(yè)務員的銷售業(yè)績好,理由為:甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.故答案為0,1,3,0,2,4;6;甲,甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.【點睛】本題考查了統(tǒng)計的相關知識,眾數(shù),平均數(shù)的應用,屬于簡單題,將圖表信息轉換成有用信息是解題關鍵.22、今年的總收入為220萬元,總支出為1萬元.【解析】試題分析:設去年總收入為x萬元,總支出為y萬元,根據(jù)利潤=收入-支出即可得出關于x、y的二元一次方程組,解之即可得出結論.試題解析:設去年的總收入為x萬元,總支出為y萬元.根據(jù)題意,得,解這個方程組,得,∴(1+10%)x=220,(1-20%)y=1.答:今年的總收入為220萬元,總支出為1萬元.23、(1)證明見解析;(2)AE=.【解析】
(1)連結AC、AC′,根據(jù)矩形的性質得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉的性質即可得到結論;(2)根據(jù)矩形的性質得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉的性質得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質得到BE=D′E,設AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結論.【詳解】解::(1)連結AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉的性質,三角形全等的判定和性質,勾股定理的應用等,熟練掌握性質定理是解題的關鍵.24、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備設施包保管理制度
- 設計公司內控管理制度
- 設計單位現(xiàn)場管理制度
- 設計項目人員管理制度
- 診所醫(yī)療器械管理制度
- 診斷試劑風險管理制度
- 試驗示范基地管理制度
- 財務資金收支管理制度
- 貨倉搬運安全管理制度
- 貨物海關代理管理制度
- 2024年江蘇省宿遷市中考地理試題(含答案)
- 《學前兒童健康教育》6-3學前兒童安全教育活動的組織與實施課件
- DB43-T 2745-2023 地理標志產品 汨羅粽子
- DBJ50-255-2022 建筑節(jié)能(綠色建筑)工程施工質量驗收標準
- 乒乓球體育課教案
- 幼兒園大班語言課件:《畢業(yè)詩》
- 勞動力保證措施以及計劃安排
- 2021利達JB-QG-LD988EL JB-QT-LD988EL 火災報警控制器 消防聯(lián)動控制器調試手冊
- 24春國家開放大學《班級管理》形考任務1-4參考答案
- 浙二醫(yī)院護士進修心得體會6篇
- 2021年中國社會科學院大學統(tǒng)計學原理期末精練試卷
評論
0/150
提交評論