




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.122.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F.已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.83.下列二次根式中,最簡二次根式是()A. B. C. D.4.如圖,AB∥CD,FH平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH5.下列圖標中,是中心對稱圖形的是()A. B.C. D.6.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定7.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發,沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數關系的圖像大致為()A. B. C. D.8.在0,﹣2,3,四個數中,最小的數是()A.0 B.﹣2 C.3 D.9.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數是()A.40° B.65° C.70° D.80°10.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數量比第一個月多440輛.設該公司第二、三兩個月投放單車數量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+440二、填空題(共7小題,每小題3分,滿分21分)11.已知二次函數的圖象開口向上,且經過原點,試寫出一個符合上述條件的二次函數的解析式:_____.(只需寫出一個)12.若一次函數y=kx﹣1(k是常數,k≠0)的圖象經過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).13.將一次函數y=2x+4的圖象向下平移3個單位長度,相應的函數表達式為_____.14.據統計,今年無錫黿頭渚“櫻花節”活動期間入園賞櫻人數約803萬人次,用科學記數法可表示為_____人次.15.如圖,△ABC內接于⊙O,AB是⊙O的直徑,點D在圓O上,BD=CD,AB=10,AC=6,連接OD交BC于點E,DE=______.16.因式分解.17.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.三、解答題(共7小題,滿分69分)18.(10分)(1)解方程組(2)若點是平面直角坐標系中坐標軸上的點,(1)中的解分別為點的橫、縱坐標,求的最小值及取得最小值時點的坐標.19.(5分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經過點(﹣1,0),求方程﹣2x2+4x+c=0的根.20.(8分)已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數).(1)求證:方程有兩個不相等的實數根;(2)若方程的兩個實數根都是整數,求k的值.21.(10分)某服裝店用4000元購進一批某品牌的文化衫若干件,很快售完,該店又用6300元錢購進第二批這種文化衫,所進的件數比第一批多40%,每件文化衫的進價比第一批每件文化衫的進價多10元,請解答下列問題:(1)求購進的第一批文化衫的件數;(2)為了取信于顧客,在這兩批文化衫的銷售中,售價保持了一致.若售完這兩批文化衫服裝店的總利潤不少于4100元錢,那么服裝店銷售該品牌文化衫每件的最低售價是多少元?22.(10分)先化簡:,再從、2、3中選擇一個合適的數作為a的值代入求值.23.(12分)對于平面直角坐標系xOy中的點P和直線m,給出如下定義:若存在一點P,使得點P到直線m的距離等于1,則稱P為直線m的平行點.(1)當直線m的表達式為y=x時,①在點,,中,直線m的平行點是______;②⊙O的半徑為,點Q在⊙O上,若點Q為直線m的平行點,求點Q的坐標.(2)點A的坐標為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點,直接寫出n的取值范圍.24.(14分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發現正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據三角形的面積公式求出AD的長,再再根據EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.2、C【解析】
解:∵AD∥BE∥CF,根據平行線分線段成比例定理可得,即,解得EF=6,故選C.3、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數含能開得盡方的因數或因式,故A不符合題意,B.被開方數含能開得盡方的因數或因式,故B不符合題意,C.被開方數不含分母;被開方數不含能開得盡方的因數或因式,故C符合題意,D.被開方數含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數不含分母;被開方數不含能開得盡方的因數或因式.4、D【解析】
根據平行線的性質以及角平分線的定義,即可得到正確的結論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同位角相等;兩直線平行,內錯角相等.5、B【解析】
根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、C【解析】
因為R不動,所以AR不變.根據三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.7、C【解析】
先分別求出點P從點B出發,沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數關系式,即可得出函數的圖象.【詳解】由題意知,點P從點B出發,沿B→C→D向終點D勻速運動,則
當0<x≤2,y=x,
當2<x≤4,y=1,
由以上分析可知,這個分段函數的圖象是C.
故選C.8、B【解析】
根據實數比較大小的法則進行比較即可.【詳解】∵在這四個數中3>0,>0,-2<0,∴-2最小.故選B.【點睛】本題考查的是實數的大小比較,即正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.9、C【解析】
根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數.【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數.10、A【解析】
根據題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據題意找到等量關系進行列方程.二、填空題(共7小題,每小題3分,滿分21分)11、y=x2等【解析】分析:根據二次函數的圖象開口向上知道a>1,又二次函數的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數的圖象開口向上,∴a>1.∵二次函數的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數的性質,二次函數圖象上點的坐標特征,對考查學生所學函數的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學生沒有注意某一個條件就容易出錯.本題的結論是不唯一的,其解答思路滲透了數形結合的數學思想.12、1【解析】
由一次函數圖象經過第一、三、四象限,可知k>0,﹣1<0,在范圍內確定k的值即可.【詳解】解:因為一次函數y=kx﹣1(k是常數,k≠0)的圖象經過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點睛】根據一次函數圖象所經過的象限,可確定一次項系數,常數項的值的符號,從而確定字母k的取值范圍.13、y=2x+1【解析】分析:直接根據函數圖象平移的法則進行解答即可.詳解:將一次函數y=2x+4的圖象向下平移3個單位長度,相應的函數是y=2x+4-3=2x+1;故答案為y=2x+1.點睛:本題考查的是一次函數的圖象與幾何變換,熟知“上加下減”的法則是解答此題的關鍵.14、8.03×106【解析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.803萬=.15、1【解析】
先利用垂徑定理得到OD⊥BC,則BE=CE,再證明OE為△ABC的中位線得到,入境計算OD?OE即可.【詳解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE為△ABC的中位線,∴,∴DE=OD-OE=5-3=1.故答案為1.【點睛】此題考查垂徑定理,中位線的性質,解題的關鍵在于利用中位線的性質求解.16、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續分解因式.因此,先提取公因式后繼續應用平方差公式分解即可:.17、(3,0)【解析】
把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【點睛】本題考查了點的坐標與拋物線解析式的關系,拋物線與x軸交點坐標的求法.本題也可以用根與系數關系直接求解.三、解答題(共7小題,滿分69分)18、(1);(2)當坐標為時,取得最小值為.【解析】
(1)用加減消元法解二元一次方程組;(2)利用(1)確定出B的坐標,進而得到AB取得最小值時A的坐標,以及AB的最小值.【詳解】解:(1)①②得:解得:把代入②得,則方程組的解為(2)由題意得:,當坐標為時,取得最小值為.【點睛】此題考查了二元一次方程組的解,以及坐標與圖形性質,熟練掌握運算法則及數形結合思想解題是解本題的關鍵.19、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】
(1)根據拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;
(2)先求出拋物線的對稱軸,再根據拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據二次函數與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數與一元二次方程,解題關鍵是運用了根與系數的關系以及二次函數的對稱性.20、(3)證明見解析(3)3或﹣3【解析】
(3)根據一元二次方程的定義得k≠2,再計算判別式得到△=(3k-3)3,然后根據非負數的性質,即k的取值得到△>2,則可根據判別式的意義得到結論;(3)根據求根公式求出方程的根,方程的兩個實數根都是整數,求出k的值.【詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數,∴(3k﹣3)3>2,即△>2.∴方程有兩個不相等的實數根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個實數根都是整數,且k為整數,∴k=3或﹣3.【點睛】本題主要考查了根的判別式的知識,熟知一元二次方程的根與△的關系是解答此題的關鍵.21、(1)50件;(2)120元.【解析】
(1)設第一批購進文化衫x件,根據數量=總價÷單價結合第二批每件文化衫的進價比第一批每件文化衫的進價多10元,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)根據第二批購進的件數比第一批多40%,可求出第二批的進貨數量,設該服裝店銷售該品牌文化衫每件的售價為y元,根據利潤=銷售單價×銷售數量-進貨總價,即可得出關于y的一元一次不等式,解之取其內的最小值即可得出結論.【詳解】解:(1)設第一批購進文化衫x件,根據題意得:+10=,解得:x=50,經檢驗,x=50是原方程的解,且符合題意,答:第一批購進文化衫50件;(2)第二批購進文化衫(1+40%)×50=70(件),設該服裝店銷售該品牌文化衫每件的售價為y元,根據題意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120,答:該服裝店銷售該品牌文化衫每件最低售價為120元.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式.22、-1.【解析】
根據分式的加法和除法可以化簡題目中的式子,然后在、2、3中選擇一個使得原分式有意義的值代入化簡后的式子即可解答本題.【詳解】,當時,原式.故答案為:-1.【點睛】本題考查分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.23、(1)①,;②,,,;(2).【解析】
(1)①根據平行點的定義即可判斷;②分兩種情形:如圖1,當點B在原點上方時,作OH⊥AB于點H,可知OH=1.如圖2,當點B在原點下方時,同法可求;(2)如圖,直線OE的解析式為,設直線BC//OE交x軸于C,作CD⊥OE于D.設⊙A與直線BC相切于點F,想辦法求出點A的坐標,再根據對稱性求出左側點A的坐標即可解決問題;【詳解】解:(1)①因為P2、P3到直線y=x的距離為1,所以根據平行點的定義可知,直線m的平行點是,,故答案為,.②解:由題意可知,直線m的所有平行點組成平行于直線m,且到直線m的距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 解除委托代理協議書
- 預存話費合同協議書
- 退役定向就業協議書
- 信用卡書面和解協議書
- 酒樓廢品回收協議書
- 菏澤學院戰略協議書
- 餐廳聯營經營協議書
- 非全日制競業協議書
- 集體公寓轉讓協議書
- 鄰居之間接電協議書
- JGJ106-2014 建筑基樁檢測技術規范
- 酒店各部門衛生區域劃分
- 工程測量控制點交樁記錄表
- GA 1810-2022城鎮燃氣系統反恐怖防范要求
- 重慶地區現代方言中的古語詞
- 3第三章申論寫作 寫作課件
- 廣西建設工程質量檢測和建筑材料試驗收費項目及標準指導性意見(新)2023.10.11
- 國開電大 可編程控制器應用實訓 形考任務5實訓報告
- PEP英語四年級下冊U5 My clothes Read and write(教學課件)
- DB37-T 2671-2019 教育機構能源消耗定額標準-(高清版)
- 信息系統項目管理師論文8篇
評論
0/150
提交評論