



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆四川成都錦江區重點名校畢業升學考試模擬卷數學卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在測試卷卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在測試卷卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于反比例函數y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上2.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.3.計算2a2+3a2的結果是()A.5a4 B.6a2 C.6a4 D.5a24.在如圖所示的數軸上,點B與點C關于點A對稱,A、B兩點對應的實數分別是和﹣1,則點C所對應的實數是()A.1+ B.2+ C.2﹣1 D.2+15.如圖,已知,為反比例函數圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.6.若代數式有意義,則實數x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠27.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π8.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a10÷a5=a5 D.(xy2)3=xy69.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.2510.下列運算正確的是()A. B.C. D.11.據悉,超級磁力風力發電機可以大幅度提升風力發電效率,但其造價高昂,每座磁力風力發電機,其建造花費估計要5300萬美元,“5300萬”用科學記數法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×10812.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設,,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在一個暗箱里放有a個除顏色外其他完全相同的球,這a個球中紅球只有3個.每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復摸球試驗后發現,摸到紅球的頻率穩定在0.25,那么可以推算出a大約是_________.14.如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標分別為(3,2),(-1,-1),則兩個正方形的位似中心的坐標是_________.15.已知a,b為兩個連續的整數,且a<<b,則ba=_____.16.不等式組的解集是_____;17.已知點P是線段AB的黃金分割點,PA>PB,AB=4cm,則PA=____cm.18.如圖,矩形中,,,將矩形沿折疊,點落在點處.則重疊部分的面積為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:;(2)解不等式組:20.(6分)解不等式組,并把它的解集表示在數軸上.21.(6分)解分式方程:x+1x-1-22.(8分)如圖,點D為△ABC邊上一點,請用尺規過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)23.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.24.(10分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現:(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數量關系為;題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數量關系為;②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數量關系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.25.(10分)某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調研,該公司決定在原計劃的基礎上,減少A種設備的購進數量,增加B種設備的購進數量,已知B種設備增加的數量是A種設備減少的數量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數量至多減少多少套?26.(12分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環保節能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,求購買A型和B型公交車每輛各需多少萬元?預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?27.(12分)解方程組:.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【答案解析】
根據反比例函數y=的圖象上點的坐標特征,以及該函數的圖象的性質進行分析、解答.【題目詳解】A.反比例函數的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內,y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【答案點睛】本題主要考查反比例函數的性質.注意:反比例函數的增減性只指在同一象限內.2、B【答案解析】根據折疊前后對應角相等可知.
解:設∠ABE=x,
根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.3、D【答案解析】
直接合并同類項,合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.【題目詳解】2a2+3a2=5a2.故選D.【答案點睛】本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關鍵.所含字母相同,并且相同字母的指數也相同的項,叫做同類項;合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.4、D【答案解析】
設點C所對應的實數是x.根據中心對稱的性質,對稱點到對稱中心的距離相等,則有,解得.故選D.5、D【答案解析】
求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【題目詳解】把,代入反比例函數,得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【答案點睛】本題考查了三角形的三邊關系定理和用待定系數法求一次函數的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.6、D【答案解析】
根據分式的分母不等于0即可解題.【題目詳解】解:∵代數式有意義,∴x-2≠0,即x≠2,故選D.【答案點睛】本題考查了分式有意義的條件,屬于簡單題,熟悉分式有意義的條件是解題關鍵.7、B【答案解析】
先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【答案點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.8、C【答案解析】
根據乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方進行計算即可得到答案.【題目詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【答案點睛】本題考查乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方解題的關鍵是掌握乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方的運算.9、C【答案解析】測試卷分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.10、D【答案解析】
由去括號法則:如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式進行計算即可.【題目詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;
B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;
C、(-a)3=≠,故原題計算錯誤;
D、2a2?3a3=6a5,故原題計算正確;
故選:D.【答案點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.11、C【答案解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】解:5300萬=53000000=.故選C.【答案點睛】在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).12、B【答案解析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質,就可以求出,從而可以求出.【題目詳解】∵矩形AEHC是由三個全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【答案點睛】本題考查了矩形的性質,平行四邊形的判定和性質,相似三角形的判定與性質,三角形的面積公式,得出S2=4S1,S3=9S1是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、12【答案解析】
在同樣條件下,大量反復試驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,根據紅球的個數除以總數等于頻率,求解即可.【題目詳解】∵摸到紅球的頻率穩定在0.25,
∴解得:a=12故答案為:12【答案點睛】此題主要考查了利用頻率估計概率,解答此題的關鍵是利用紅球的個數除以總數等于頻率.14、(1,0);(﹣5,﹣2).【答案解析】
本題主要考查位似變換中對應點的坐標的變化規律.因而本題應分兩種情況討論,一種是當E和C是對應頂點,G和A是對應頂點;另一種是A和E是對應頂點,C和G是對應頂點.【題目詳解】∵正方形ABCD和正方形OEFG中A和點F的坐標分別為(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)當E和C是對應頂點,G和A是對應頂點時,位似中心就是EC與AG的交點,
設AG所在直線的解析式為y=kx+b(k≠0),
∴,解得.
∴此函數的解析式為y=x-1,與EC的交點坐標是(1,0);
(2)當A和E是對應頂點,C和G是對應頂點時,位似中心就是AE與CG的交點,
設AE所在直線的解析式為y=kx+b(k≠0),
,解得,故此一次函數的解析式為…①,
同理,設CG所在直線的解析式為y=kx+b(k≠0),
,解得,
故此直線的解析式為…②
聯立①②得
解得,故AE與CG的交點坐標是(-5,-2).
故答案為:(1,0)、(-5,-2).15、1【答案解析】
根據已知a<<b,結合a、b是兩個連續的整數可得a、b的值,即可求解.【題目詳解】解:∵a,b為兩個連續的整數,且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【答案點睛】此題考查的是如何根據無理數的范圍確定兩個有理數的值,題中根據的取值范圍,可以很容易得到其相鄰兩個整數,再結合已知條件即可確定a、b的值,16、x≤1【答案解析】分析:分別求出不等式組中兩個不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點睛:本題主要考查了解一元一次不等式組.17、2-2【答案解析】
根據黃金分割點的定義,知AP是較長線段;則AP=AB,代入運算即可.【題目詳解】解:由于P為線段AB=4的黃金分割點,且AP是較長線段;則AP=4×=cm,故答案為:(2-2)cm.【答案點睛】此題考查了黃金分割的定義,應該識記黃金分割的公式:較短的線段=原線段的,難度一般.18、10【答案解析】
根據翻折的特點得到,.設,則.在中,,即,解出x,再根據三角形的面積進行求解.【題目詳解】∵翻折,∴,,又∵,∴,∴.設,則.在中,,即,解得,∴,∴.【答案點睛】此題主要考查勾股定理,解題的關鍵是熟知翻折的性質及勾股定理的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2).【答案解析】
(1)根據冪的運算與實數的運算性質計算即可.(2)先整理為最簡形式,再解每一個不等式,最后求其解集.【題目詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【答案點睛】本題考查了實數的混合運算和解一元一次不等式組,熟練掌握和運用相關運算性質是解答關鍵.20、不等式組的解是x≥3;圖見解析【答案解析】
先求出每個不等式的解集,再求出不等式組的解集即可.【題目詳解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式組的解是x≥3,在數軸上表示為:.【答案點睛】本題考查了解一元一次不等式組和在數軸上表示不等式組的解集,能根據不等式的解集找出不等式組的解集是解此題的關鍵.21、方程無解【答案解析】
找出分式方程的最簡公分母,去分母后轉化為整式方程,求出整式方程的解得到x的值,再代入最簡公分母進行檢驗即可.【題目詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【答案點睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗根.22、見解析【答案解析】
以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【題目詳解】解:如圖,點E即為所求作的點.【答案點睛】本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關鍵.23、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【答案解析】
(1)利用待定系數法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;
(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數的性質解決問題;
(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【題目詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【答案點睛】本題考核知識點:二次函數的綜合應用.解題關鍵點:靈活運用二次函數性質,運用數形結合思想.24、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【答案解析】
(1)根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(2)①根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;②根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(3)分兩種情況利用勾股定理和三角函數解答即可.【題目詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如圖3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP?tan30°==1,∴DM=AP﹣AD=﹣1.故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【答案點睛】此題是四邊形綜合題,主要考查了正方形的性質全等三角形的判定和性質,分類討論的數學思想解決問題,判斷出△ADP≌△PFN是解本題的關鍵.25、(1)該公司計劃購進A種品牌的教學設備20套,購進B種品牌的教學設備30套;(2)A種品牌的教學設備購進數量至多減少1套.【答案解析】
(1)設該公司計劃購進A種品牌的教學設備x套,購進B種品牌的教學設備y套,根據花11萬元購進兩種設備銷售后可獲得利潤12萬元,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種品牌的教學設備購進數量減少m套,則B種品牌的教學設備購進數量增加1.5m套,根據總價=單價×數量結合用于購進這兩種教學設備的總資金不超過18萬元,即可得出關于m的一元一次不等式,解之取其中最大的整數即可得出結論.【題目詳解】解:(1)設該公司計劃購進A種品牌的教學設備x套,購進B種品牌的教學設備y套,根據題意得:解得:.答:該公司計劃購進A種品牌的教學設備20套,購進B種品牌的教學設備30套.(2)設A種品牌的教學設備購進數量減少m套,則B種品牌的教學設備購進數量增加1.5m套,根據題意得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業節能減排的技術與政策探討
- 工業電機故障診斷與維護策略
- 工業設計在產品創新中的價值
- 工業節能的智慧能源管理
- 工業設計與產品創新表達
- 工業設計產品外觀的色彩搭配與創新性
- 工作環境對教師工作滿意度的影響
- 工廠企業消防安全管理
- 工程機械設備安全防護技術
- 工廠環境與職業健康安全培訓
- 2025年我國工程機械出口東南亞市場現狀分析
- 濟鋼人文考試試題及答案
- 安裝費合同協議
- 瑜伽教培理論試題及答案
- 人工智能在化學領域的應用與未來發展展望
- 慢性病管理小組的工作職責與目標
- 《SLT 105-2025水工金屬結構防腐蝕技術規范》知識培訓
- 《汽車構造與拆裝》課程標準 (一)
- 私募股權投資風險評估模型-深度研究
- 第1-2課時listening and speaking Unit 8 The People and the Events教案-【中職專用】2024-2025學年高一英語同步課堂(高教版2023修訂版·基礎模塊1)
- 2025年共青團入團積極分子考試測試試卷題庫及答案
評論
0/150
提交評論