2022屆云南省紅河市達標名校中考數學考前最后一卷含解析_第1頁
2022屆云南省紅河市達標名校中考數學考前最后一卷含解析_第2頁
2022屆云南省紅河市達標名校中考數學考前最后一卷含解析_第3頁
2022屆云南省紅河市達標名校中考數學考前最后一卷含解析_第4頁
2022屆云南省紅河市達標名校中考數學考前最后一卷含解析_第5頁
免費預覽已結束,剩余17頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在剛剛結束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數是9 B.眾數為16 C.平均分為7.78 D.方差為22.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm3.已知:二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,下列結論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個4.如圖,下列各數中,數軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根5.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°6.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數為()A.30° B.45° C.60° D.75°7.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.8.已知數a、b、c在數軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c9.已知反比例函數,下列結論不正確的是()A.圖象經過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>210.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.11.在同一直角坐標系中,函數y=kx-k與(k≠0)的圖象大致是()A. B.C. D.12.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數關系的大致圖象是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在實數范圍內分解因式:x2y﹣2y=_____.14.因式分解:_______________.15.如圖,等邊△ABC的邊長為1cm,D、E分別是AB、AC邊上的點,將△ADE沿直線DE折疊,點A落在點處,且點在△ABC的外部,則陰影部分圖形的周長為_____cm.16.某數學興趣小組在研究下列運算流程圖時發現,取某個實數范圍內的x作為輸入值,則永遠不會有輸出值,這個數學興趣小組所發現的實數x的取值范圍是_____.17.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側,頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.18.|-3|=_________;三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.20.(6分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.21.(6分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數,該方程都有兩個不相等的實數根.22.(8分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,請你根據圖表中的信息完成下列問題:頻數分布表中a=,b=,并將統計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?23.(8分)如圖,在平面直角坐標系xOy中,直線與函數的圖象的兩個交點分別為A(1,5),B.(1)求,的值;(2)過點P(n,0)作x軸的垂線,與直線和函數的圖象的交點分別為點M,N,當點M在點N下方時,寫出n的取值范圍.24.(10分)已知關于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.25.(10分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數軸上表示出來.26.(12分)化簡(),并說明原代數式的值能否等于-1.27.(12分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據中位數,眾數,平均數,方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數是25位與26位的平均數,即為1.故選A.【點睛】本題考查中位數,眾數,平均數,方差的定義,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.2、A【解析】

過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.3、B【解析】

根據二次函數的圖象與性質判斷即可.【詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【點睛】本題二次函數的圖象與性質,牢記公式和數形結合是解題的關鍵.4、C【解析】

解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,

故根據數軸可知,

故選C5、A【解析】分析:依據AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內角和定理:三角形內角和為180°.解決問題的關鍵是三角形外角性質以及角平分線的定義的運用.6、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質.7、A【解析】作AH⊥BC于H,作直徑CF,連結BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據三角形中位線性質得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質.8、C【解析】

首先根據數軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.9、D【解析】

A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;

B選項:因為-2<0,圖象在第二、四象限,故本選項正確;

C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;

D選項:當x>0時,y<0,故本選項錯誤.

故選D.10、B【解析】

根據俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點睛】考查了三視圖的知識,根據俯視圖是從物體的上面看得到的視圖得出是解題關鍵.11、D【解析】

根據k值的正負性分別判斷一次函數y=kx-k與反比例函數(k≠0)所經過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數y=kx-k的圖象經過一、三、四象限,反比例函數(k≠0)的圖象經過一、三象限;當k<0時,一次函數y=kx-k的圖象經過一、二、四象限,反比例函數(k≠0)的圖象經過二、四象限;根據選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數、反比例函數的圖象.正確這兩種圖象所經過的象限是解題的關鍵.12、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數,所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當2≤x≤6時,如圖,此時y=×2×2=2,(3)當6<x≤8時,如圖,設△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數的圖象.在運動的過程中正確區分函數圖象是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y(x+)(x﹣)【解析】

先提取公因式y后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數范圍內進行因式分解的式子的結果一般要分到出現無理數為止.14、x3(y+1)(y-1)【解析】

先提取公因式x3,再利用平方差公式分解可得.【詳解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案為x3(y+1)(y-1).【點睛】本題主要考查提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握一般整式的因式分解的步驟--先提取公因式,再利用公式法分解.15、3【解析】

由折疊前后圖形全等,可將陰影部分圖形的周長轉化為三角形周長.【詳解】∵△A'DE與△ADE關于直線DE對稱,∴AD=A'D,AE=A'E,C陰影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案為3.【點睛】由圖形軸對稱可以得到對應的邊相等、角相等.16、【解析】

通過找到臨界值解決問題.【詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數值越來越大,會有輸出值;當x<時,數值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【點睛】本題考查不等式的性質,解題的關鍵是理解題意,學會找到臨界值解決問題.17、﹣1.【解析】

由題意得:當頂點在M處,點A橫坐標為-3,可以求出拋物線的a值;當頂點在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當頂點在M處,點A橫坐標為-3,則拋物線的表達式為:y=a(x+1)2+4,將點A坐標(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當x=-1時,y=a-b+c,頂點在N處時,y=a-b+c取得最小值,頂點在N處,拋物線的表達式為:y=-(x-3)2+1,當x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點睛】本題考查的是二次函數知識的綜合運用,本題的核心是確定頂點在M、N處函數表達式,其中函數的a值始終不變.18、1【解析】分析:根據負數的絕對值等于這個數的相反數,即可得出答案.解答:解:|-1|=1.故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數;②根據四邊形BFDP是正方形,可以求得∠DAE的度數.【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質、切線的性質、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱形的性質和正方形的性質解答.20、米.【解析】

先求拋物線對稱軸,再根據待定系數法求拋物線解析式,再求函數最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設拋物線的表達式為:y=ax2+bx+1(a≠0),則據題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數的應用.解題關鍵點:熟記二次函數的基本性質.21、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數,該方程都有兩個不相等的實數根.考點:1.一元二次方程根與系數的關系;2.一元二次方程根根的判別式;3.配方法的應用.22、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1)由統計圖易得a與b的值,繼而將統計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.詳解:(1)a=1-0.15-0.35-0.20=0.3;∵總人數為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為:0.3,4;補全統計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:.點睛:此題考查了列表法或樹狀圖法求概率以及條形統計圖的知識.用到的知識點為:概率=所求情況數與總情況數之比.23、(1),;(2)0<n<1或者n>1.【解析】

(1)利用待定系數法即可解決問題;(2)利用圖象法即可解決問題;【詳解】解:(1)∵A(1,1)在直線上,∴,∵A(1,1)在的圖象上,∴.(2)觀察圖象可知,滿足條件的n的值為:0<n<1或者n>1.【點睛】此題考查待定系數法求反比例函數與一次函數的解析式,解題關鍵在于利用數形結合的思想求解.24、(1)m≥﹣34;(2)m【解析】

(1)根據方程有兩個相等的實數根可知△>1,求出m的取值范圍即可;(2)根據根與系數的關系得出α+β與αβ的值,代入代數式進行計算即可.【詳解】(1)由題意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根與系數的關系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1應舍去,m的值為2.【點睛】本題考查的是根與系數的關系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=﹣ba,x1x2=c25、(1)4﹣5;﹣<x≤2,在數軸上表示見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論