




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b2.如圖,在4×4的正方形網格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經過的路徑弧AC的長為()A. B.π C.2π D.3π3.如圖,一張半徑為的圓形紙片在邊長為的正方形內任意移動,則在該正方形內,這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.4.已知關于的方程,下列說法正確的是A.當時,方程無解B.當時,方程有一個實數解C.當時,方程有兩個相等的實數解D.當時,方程總有兩個不相等的實數解5.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣6.能說明命題“對于任何實數a,|a|>﹣a”是假命題的一個反例可以是()A.a=﹣2 B.a= C.a=1 D.a=7.如圖圖形中,是中心對稱圖形的是()A. B. C. D.8.下列關于事件發生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機事件B.體育彩票的中獎率為10%,則買100張彩票必有10張中獎C.在同批次10000件產品中抽取100件發現有5件次品,則這批產品中大約有500件左右的次品D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為9.在對某社會機構的調查中收集到以下數據,你認為最能夠反映該機構年齡特征的統計量是()年齡13141525283035其他人數30533171220923A.平均數 B.眾數 C.方差 D.標準差10.方程2x+3=1A.x=3 B.x=4 C.x=5 D.x=﹣5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,經過點A的雙曲線y=(x>0)同時經過點B,且點A在點B的左側,點A的橫坐標為1,∠AOB=∠OBA=45°,則k的值為_______.12.如圖,正方形ABCD內有兩點E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.13.在某一時刻,測得一根長為1.5m的標桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.14.若式子有意義,則x的取值范圍是______.15.不等式組的非負整數解的個數是_____.16.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點O,點E在AC上,若OE=2,則CE的長為_______三、解答題(共8題,共72分)17.(8分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的統計圖,已知“查資料”的人數是40人.請你根據以上信息解答下列問題:在扇形統計圖中,“玩游戲”對應的百分比為,圓心角度數是度;補全條形統計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數.18.(8分)如圖所示,已知,試判斷與的大小關系,并說明理由.19.(8分)如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:≌;(2)當時,求四邊形AECF的面積.20.(8分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.21.(8分)已知:正方形繞點順時針旋轉至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉角.22.(10分)某校組織學生去9km外的郊區游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發,結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?23.(12分)如圖,將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.24.如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數據即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點睛】本題主要考查矩形、正方形和整式的運算,熟讀題目,理解題意,清楚題中的等量關系是解答本題的關鍵.2、A【解析】
根據旋轉的性質和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關鍵是根據旋轉的性質和弧長公式解答.3、C【解析】
這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關鍵.4、C【解析】當時,方程為一元一次方程有唯一解.當時,方程為一元二次方程,的情況由根的判別式確定:∵,∴當時,方程有兩個相等的實數解,當且時,方程有兩個不相等的實數解.綜上所述,說法C正確.故選C.5、C【解析】試題分析:找出一元二次方程的系數a,b及c的值,利用根與系數的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數的關系6、A【解析】
將各選項中所給a的值代入命題“對于任意實數a,”中驗證即可作出判斷.【詳解】(1)當時,,此時,∴當時,能說明命題“對于任意實數a,”是假命題,故可以選A;(2)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能B;(3)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能C;(4)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能D;故選A.【點睛】熟知“通過舉反例說明一個命題是假命題的方法和求一個數的絕對值及相反數的方法”是解答本題的關鍵.7、D【解析】
根據中心對稱圖形的概念和識別.【詳解】根據中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.8、C【解析】
根據隨機事件,必然事件的定義以及概率的意義對各個小題進行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯誤.B.體育彩票的中獎率為10%,則買100張彩票可能有10張中獎,故錯誤.C.在同批次10000件產品中抽取100件發現有5件次品,則這批產品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯誤.故選:C.【點睛】考查必然事件,隨機事件的定義以及概率的意義,概率=所求情況數與總情況數之比.9、B【解析】分析:根據平均數的意義,眾數的意義,方差的意義進行選擇.詳解:由于14歲的人數是533人,影響該機構年齡特征,因此,最能夠反映該機構年齡特征的統計量是眾數.故選B.點睛:本題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的統計量有平均數、中位數、眾數、方差等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.10、C【解析】方程兩邊同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,檢驗:當x=5時,(x-1)(x+3)≠0,所以x=5是原方程的解,故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
分析:過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線y=(x>0)經過點B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負值已舍去),故答案為.點睛:本題考查了反比例函數圖象上點的坐標特征,坐標與圖形的性質,全等三角形的判定與性質,等腰三角形的判定與性質等知識.解決問題的關鍵是作輔助線構造全等三角形.【詳解】請在此輸入詳解!12、【解析】分析:連接AC,交EF于點M,可證明△AEM∽△CMF,根據條件可求得AE、EM、FM、CF,再結合勾股定理可求得AB.詳解:連接AC,交EF于點M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,FM=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長為.故答案為:.點睛:本題主要考查相似三角形的判定和性質及正方形的性質,構造三角形相似利用相似三角形的對應邊成比例求得AC的長是解題的關鍵,注意勾股定理的應用.13、13【解析】
根據同時同地物高與影長成比列式計算即可得解.【詳解】解:設旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點睛】本題考查投影,解題的關鍵是應用相似三角形.14、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.15、1【解析】
先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.16、5或【解析】分析:由菱形的性質證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點E在AC上,∴當E在點O左邊時當點E在點O右邊時∴或;故答案為或.點睛:考查菱形的性質,注意分類討論思想在數學中的應用,不要漏解.三、解答題(共8題,共72分)17、(1)35%,126;(2)見解析;(3)1344人【解析】
(1)由扇形統計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結果;(2)求出3小時以上的人數,補全條形統計圖即可;(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結果.【詳解】(1)根據題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對應的圓心角度數是360°×35%=126°,故答案為35%,126;(2)根據題意得:40÷40%=100(人),∴3小時以上的人數為100﹣(2+16+18+32)=32(人),補全圖形如下:;(3)根據題意得:2100×=1344(人),則每周使用手機時間在2小時以上(不含2小時)的人數約有1344人.【點睛】本題考查了條形統計圖,扇形統計圖,以及用樣本估計總體,準確識圖,從中找到必要的信息進行解題是關鍵.18、.【解析】
首先判斷∠AED與∠ACB是一對同位角,然后根據已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(內錯角相等,兩直線平行).
∴∠3=∠ADE(兩直線平行,內錯角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代換).
∴DE∥BC(同位角相等,兩直線平行).
∴∠AED=∠ACB(兩直線平行,同位角相等).【點睛】本題重點考查平行線的性質和判定,難度適中.19、(1)見解析;(2)【解析】
(1)根據平行四邊形的性質得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據全等三角形的判定推出即可;
(2)求出△ABE是等邊三角形,求出高AH的長,再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點E、F分別是BC、AD的中點,∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點E、F分別是BC、AD的中點,,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【點睛】本題考查了等邊三角形的性質和判定,全等三角形的判定,平行四邊形的性質和判定等知識點,能綜合運用定理進行推理是解此題的關鍵.20、證明見解析.【解析】
(1)根據旋轉的性質可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據垂直可得出∠DBE=∠CBE=30°,繼而可根據SAS證明△BDE≌△BCE;(2)根據(1)以及旋轉的性質可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內繞點B旋轉60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉的性質;全等三角形的判定與性質;菱形的判定.21、(1)證明見解析;(2).【解析】
(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF,根據全等三角形的性質即可得CE=DF;(2)由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【詳解】(1)證明:連接,∵正方形旋轉至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【點睛】本題考查了正方形的性質、旋轉的性質及全等三角形的判定與性質,證明ΔEAC?ΔDAF是解決問題的關鍵.22、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】
設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解分式方程即可.【詳解】解:設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解得:x=12,經檢驗,x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:找出相等關系,列出方程.23、(1)證明見解析;(2)AE=.【解析】
(1)連結AC、AC′,根據矩形的性質得到∠ABC=90°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- it員工管理制度
- 校內午餐午休管理制度
- 校園wifi管理制度
- 校園午餐午休管理制度
- 校園安保器具管理制度
- 校園手機存放管理制度
- 校園污染控制管理制度
- 校園疫情輿情管理制度
- 校園足球分級管理制度
- 校園隱患閉環管理制度
- 貴州美食課件
- 2021-2022學年浙江省杭州市臨平區小學二年級下冊語文期末試題及答案
- 江蘇省蘇州市2022-2023學年高一下學期期末迎考數學試卷(原卷)
- DB21T 2539-2015 體育館用木地板鋪裝技術規程
- 幼兒園繪本故事《三只小豬蓋房子》教學課件全文
- 食品行業供貨周期管理方案
- 傅里葉級數和傅里葉變換課件
- 小學英語時態練習單選題100道及答案解析
- 國家漢語主題詞表
- (新版)特種設備安全管理取證考試題庫(濃縮500題)
- 論網絡言論自由的法律規制分析研究-以當前網絡暴力現象為解析 法學專業
評論
0/150
提交評論