山東省威海市2022年高考仿真卷數學試卷含解析_第1頁
山東省威海市2022年高考仿真卷數學試卷含解析_第2頁
山東省威海市2022年高考仿真卷數學試卷含解析_第3頁
山東省威海市2022年高考仿真卷數學試卷含解析_第4頁
山東省威海市2022年高考仿真卷數學試卷含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數z滿足,則復數z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且3.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件4.已知集合,集合,若,則()A. B. C. D.5.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④6.為了加強“精準扶貧”,實現偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.647.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.8.一袋中裝有個紅球和個黑球(除顏色外無區別),任取球,記其中黑球數為,則為()A. B. C. D.9.己知集合,,則()A. B. C. D.10.給出個數,,,,,,其規律是:第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,以此類推,要計算這個數的和.現已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;11.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙12.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.14.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.15.設(其中為自然對數的底數),,若函數恰有4個不同的零點,則實數的取值范圍為________.16.已知隨機變量服從正態分布,若,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若函數的圖象與軸有且只有一個公共點,求實數的取值范圍;(2)若對任意成立,求實數的取值范圍.18.(12分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.19.(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列.(2)令,求數列的前項和.20.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.21.(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.22.(10分)已知數列{an}的各項均為正,Sn為數列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設bn,求數列{bn}的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.2.B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.3.A【解析】

向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.4.A【解析】

根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.5.D【解析】

求出圓心到直線的距離為:,得出,根據條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據點到直線距離可知,①②④滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.6.B【解析】

根據題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數學文化,還考查數學建模能力以及分類討論思想,屬于中檔題.7.B【解析】

根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.8.A【解析】

由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數學期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數學期望為.故選:A.【點睛】本題考查隨機變量數學期望的計算,考查計算能力,屬于基礎題.9.C【解析】

先化簡,再求.【詳解】因為,又因為,所以,故選:C.【點睛】本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎題.10.A【解析】

要計算這個數的和,這就需要循環50次,這樣可以確定判斷語句①,根據累加最的變化規律可以確定語句②.【詳解】因為計算這個數的和,循環變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環結構,正確讀懂題意是解本題的關鍵.11.A【解析】

利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.12.B【解析】

列舉出循環的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.14.【解析】

連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.15.【解析】

求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,,當,,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及.求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題.16.0.4【解析】

因為隨機變量ζ服從正態分布,利用正態曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態分布所以正態曲線關于對稱,所.【點睛】本題考查了正態分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)求出及其導函數,利用研究的單調性和最值,根據零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導函數,由研究的單調性,通過分類討論可得的單調性得出結論.【詳解】解(1)函數所以討論:①當時,無零點;②當時,,所以在上單調遞增.取,則又,所以,此時函數有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調遞減;當時,所以在上單調遞增.據題意,得,所以(舍)或綜上,所求實數的取值范圍為.(2)令,根據題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數.又函數在上單調遞增,在上單調遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數,據①求解知,不符合題意.③若,則當時,恒有,故在上是減函數,于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數的取值范圍是.【點睛】本題考查函數零點問題,考查不等式恒成立問題,考查用導數研究函數的單調性.解題關鍵是通過分類討論研究函數的單調性.本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力.18.(1).(2)1【解析】

(1)先根據題意建立空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2,由AN=λ,設N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos〈,〉|===求解.【詳解】(1)因為PA⊥平面ABCD,且AB,AD?平面ABCD,所以PA⊥AB,PA⊥AD.又因為∠BAD=90°,所以PA,AB,AD兩兩互相垂直.分別以AB,AD,AP為x,y,z軸建立空間直角坐標系,則由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因為M為PC的中點,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以異面直線AP,BM所成角的余弦值為.(2)因為AN=λ,所以N(0,λ,0)(0≤λ≤4),則=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).設平面PBC的法向量為=(x,y,z),則即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一個法向量.因為直線MN與平面PBC所成角的正弦值為,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值為1.【點睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.19.(1)見解析;(2)【解析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差數列的證明,考查了等差數列及等比數列的前項和公式的應用,考查了學生的計算求解能力,屬于中檔題.20.(1)(2).【解析】

(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標運算,以及向量平行,是常考題型.21.(1);(2)4.【解析】

(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數的基本關系式求得.【詳解】(1)在中,由面積公式:在中,由余弦定理可得:(2)在中,由余弦定理可得:在中,由正弦定理可得:,為銳角.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形面積公式,考查同角三角函數的基本關系式,屬于中檔題.22.(1)an=2n+1;(2)2.【解析】

(1)根據題意求出首項,再由(an+12+2/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論