




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.若,,則以為根的一元二次方程是()A. B.C. D.2.如圖,在直角坐標系中,點A是x軸正半軸上的一個定點,點B是雙曲線y=(x>0)上的一個動點,當點B的橫坐標系逐漸增大時,△OAB的面積將會()A.逐漸變小 B.逐漸增大 C.不變 D.先增大后減小3.如圖,已知在中,,于,則下列結論錯誤的是()A. B. C. D.4.對于反比例函數,下列說法不正確的是A.圖象分布在第二、四象限B.當時,隨的增大而增大C.圖象經過點(1,-2)D.若點,都在圖象上,且,則5.如圖在△ABC中,點D、E分別在△ABC的邊AB、AC上,不一定能使△ADE與△ABC相似的條件是()A.∠AED=∠B B.∠ADE=∠C C. D.6.在同一直角坐標系中,函數y=kx﹣k與y=(k≠0)的圖象大致是()A. B.C. D.7.已知關于軸對稱點為,則點的坐標為()A. B. C. D.8.設A(﹣2,y1)、B(1,y2)、C(2,y3)是雙曲線上的三點,則()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y29.如圖,在平行四邊形ABCD中,E為CD上一點,連接AE,BD,且AE,BD交于點F,::25,則DE:=()A.2:5 B.3:2 C.2:3 D.5:310.下列約分正確的是()A. B. C. D.二、填空題(每小題3分,共24分)11.小明和小亮在玩“石頭、剪子、布”的游戲,兩人一起做同樣手勢的概率是_____________.12.在平面直角坐標系中,點(﹣3,2)關于原點對稱的點的坐標是_____.13.如圖,在⊙O中,∠AOB=60°,則∠ACB=____度.14.如圖,在與中,,要使與相似,還需添加一個條件,這個條件可以是____________(只需填一個條件)15.若反比例函數為常數)的圖象在第二、四象限,則的取值范圍是_____.16.一個圓錐的母線長為10,高為6,則這個圓錐的側面積是_______.17.如圖,在平面直角坐標系中,點A的坐標為,反比例函數的圖象經過線段OA的中點B,則k=_____.18.如果△ABC∽△DEF,且△ABC的三邊長分別為4、5、6,△DEF的最短邊長為12,那么△DEF的周長等于_____.三、解答題(共66分)19.(10分)如圖,拋物線與軸交于、兩點,與軸交于點.(1)求點,點和點的坐標;(2)在拋物線的對稱軸上有一動點,求的值最小時的點的坐標;(3)若點是直線下方拋物線上一動點,運動到何處時四邊形面積最大,最大值面積是多少?20.(6分)在全校的科技制作大賽中,王浩同學用木板制作了一個帶有卡槽的三角形手機架.如圖所示,卡槽的寬度DF與內三角形ABC的AB邊長相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機的最長邊為17cm,王浩同學能否將此手機立放入卡槽內?請說明你的理由(參考數據:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)21.(6分)已知二次函數y=2x2+4x+3,當﹣2≤x≤﹣1時,求函數y的最小值和最大值,如圖是小明同學的解答過程.你認為他做得正確嗎?如果正確,請說明解答依據,如果不正確,請寫出你得解答過程.22.(8分)永祚寺雙塔,又名凌霄雙塔,是山西省會太原現存古建筑中最高的建筑.位于太原市城區東南向山腳畔.數學活動小組的同學對其中一塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點到地面上一點的距離為,塔的頂端為點,且,在點處豎直放一根標桿,其頂端為,在的延長線上找一點,使三點在同一直線上,測得.(1)方法1,已知標桿,求該塔的高度;(2)方法2,測得,已知,求該塔的高度.23.(8分)如圖,拋物線y=ax2+5ax+c(a<0)與x軸負半軸交于A、B兩點(點A在點B的左側),與y軸交于C點,D是拋物線的頂點,過D作DH⊥x軸于點H,延長DH交AC于點E,且S△ABD:S△ACB=9:16,(1)求A、B兩點的坐標;(2)若△DBH與△BEH相似,試求拋物線的解析式.24.(8分)閱讀以下材料,并按要求完成相應地任務:萊昂哈德·歐拉(LeonhardEuler)是瑞士數學家,在數學上經常見到以他的名字命名的重要常數,公式和定理,下面是歐拉發現的一個定理:在△ABC中,R和r分別為外接圓和內切圓的半徑,O和I分別為其外心和內心,則.如圖1,⊙O和⊙I分別是△ABC的外接圓和內切圓,⊙I與AB相切分于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.下面是該定理的證明過程(部分):延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),∴△MDI∽△ANI,∴,∴①,如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BE,BD,BI,IF,∵DE是⊙O的直徑,∴∠DBE=90°,∵⊙I與AB相切于點F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所對圓周角相等),∴△AIF∽△EDB,∴,∴②,任務:(1)觀察發現:,(用含R,d的代數式表示);(2)請判斷BD和ID的數量關系,并說明理由;(3)請觀察式子①和式子②,并利用任務(1),(2)的結論,按照上面的證明思路,完成該定理證明的剩余部分;(4)應用:若△ABC的外接圓的半徑為5cm,內切圓的半徑為2cm,則△ABC的外心與內心之間的距離為cm.25.(10分)元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.(1)求甲、乙兩種蘋果的進價分別是每千克多少元?(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.26.(10分)某種蔬菜的售價(元)與銷售月份之間的關系如圖所示,成本(元)與銷售月份之間的關系如圖所示.(圖的圖象是線段,圖的圖象是拋物線)(1)已知6月份這種蔬菜的成本最低,此時出售每千克的利潤是多少元?(利潤=售價成本)(2)設每千克該蔬菜銷售利潤為,請列出與之間的函數關系式,并求出哪個月出售這種蔬菜每千克的利潤最大,最大利潤是多少?(3)已知市場部銷售該種蔬菜4、5兩個月的總利潤為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克.4、5兩個月的銷售量分別是多少萬千克?
參考答案一、選擇題(每小題3分,共30分)1、B【分析】由已知條件可得出,再根據一元二次方程的根與系數的關系,,分別得出四個方程的兩個根的和與積,即可得出答案.【詳解】解:∵,∴A.,方程的兩個根的和為-3,積為-2,選項錯誤;B.,方程的兩個根的和為3,積為2,選項正確;C.,方程的兩個根的和為-3,積為2,選項錯誤;D.,方程的兩個根的和為3,積為-2,選項錯誤;故選:B.【點睛】本題考查的知識點是根與系數的關鍵,熟記求根公式是解此題的關鍵.2、A【解析】試題分析:根據反比例函數的性質結合圖形易知△OAB的高逐漸減小,再結合三角形的面積公式即可判斷.要知△OAB的面積的變化,需考慮B點的坐標變化,因為A點是一定點,所以OA(底)的長度一定,而B是反比例函數圖象上的一點,當它的橫坐標不斷增大時,根據反比例函數的性質可知,函數值y隨自變量x的增大而減小,即△OAB的高逐漸減小,故選A.考點:反比例函數的性質,三角形的面積公式點評:本題屬于基礎應用題,只需學生熟練掌握反比例函數的性質,即可完成.3、A【分析】根據三角形的面積公式判斷A、D,根據射影定理判斷B、C.【詳解】由三角形的面積公式可知,CD?AB=AC?BC,A錯誤,符合題意,D正確,不符合題意;
∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD?AB,BC2=BD?AB,B、C正確,不符合題意;
故選:A.【點睛】本題考查的是射影定理、三角形的面積計算,掌握射影定理、三角形的面積公式是解題的關鍵.4、D【分析】根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵,∴點(1,?2)在它的圖象上,故本選項正確;D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】本題考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.5、C【分析】由題意根據相似三角形的判定定理依次對各選項進行分析判斷即可.【詳解】解:A、∠AED=∠B,∠A=∠A,則可判斷△ADE∽△ACB,故A選項錯誤;B、∠ADE=∠C,∠A=∠A,則可判斷△ADE∽△ACB,故B選項錯誤;C、不能判定△ADE∽△ACB,故C選項正確;D、,且夾角∠A=∠A,能確定△ADE∽△ACB,故D選項錯誤.故選:C.【點睛】本題考查的是相似三角形的判定,熟練掌握相似三角形的判定定理是解答此題的關鍵.6、B【分析】根據k的取值范圍,分別討論k>0和k<0時的情況,然后根據一次函數和反比例函數圖象的特點進行選擇正確答案.【詳解】解:①當k>0時,一次函數y=kx﹣k經過一、三、四象限,反比例函數的的圖象經過一、三象限,故B選項的圖象符合要求,②當k<0時,一次函數y=kx﹣k經過一、二、四象限,反比例函數的的圖象經過二、四象限,沒有符合條件的選項.故選:B.【點睛】此題考查反比例函數的圖象問題;用到的知識點為:反比例函數與一次函數的k值相同,則兩個函數圖象必有交點;一次函數與y軸的交點與一次函數的常數項相關.7、D【分析】利用關于x軸對稱的點坐標的特點即可解答.【詳解】解:∵關于軸對稱點為∴的坐標為(-3,-2)故答案為D.【點睛】本題考查了關于x軸對稱的點坐標的特點,即識記關于x軸對稱的點坐標的特點是橫坐標不變,縱坐標變為相反數.8、B【分析】將A、B、C的橫坐標代入雙曲線,求出對應的橫坐標,比較即可.【詳解】由題意知:A(﹣2,y1)、B(1,y2)、C(2,y3)在雙曲線上,將代入雙曲線中,得∴.故選B.【點睛】本題主要考查了雙曲線函數的性質,正確掌握雙曲線函數的性質是解題的關鍵.9、B【分析】根據平行四邊形的性質得到DC//AB,DC=AB,得到△DFE∽△BFA,根據相似三角形的性質計算即可.【詳解】四邊形ABCD是平行四邊形,
,,
∽,
:,
,
::2,
故選B.【點睛】本題考查的是相似三角形的性質、平行四邊形的性質,掌握相似三角形的面積比等于相似比的平方是解題的關鍵.10、D【分析】根據約分的運算法則,以及分式的基本性質,分別進行判斷,即可得到答案.【詳解】解:A、,故A錯誤;B、,故B錯誤;C、,故C錯誤;D、,正確;故選:D.【點睛】本題考查了分式的基本性質,以及約分的運算法則,解題的關鍵是熟練掌握分式的基本性質進行解題.二、填空題(每小題3分,共24分)11、【分析】畫樹狀圖展示所有9種等可能的結果數,再找出兩人隨機同時出手一次,做同樣手勢的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:
共有9種等可能的結果數,其中兩人隨機同時出手一次,做同樣手勢的結果數為3,
故兩人一起做同樣手勢的概率是的概率為.故答案為:.【點睛】本題涉及列表法和樹狀圖法以及相關概率知識,用到的知識點為:概率=所求情況數與總情況數之比.12、(3,﹣2)【解析】根據平面直角坐標系內兩點關于原點對稱橫縱坐標互為相反數,即可得出答案.【詳解】解:平面直角坐標系內兩點關于原點對稱橫縱坐標互為相反數,∴點(﹣3,2)關于原點對稱的點的坐標是(3,﹣2),故答案為(3,﹣2).【點睛】本題主要考查了平面直角坐標系內點的坐標位置關系,難度較小.13、1.【詳解】解:同弧所對圓心角是圓周角的2倍,所以∠ACB=∠AOB=1°.∵∠AOB=60°∴∠ACB=1°故答案為:1.【點睛】本題考查圓周角定理.14、∠B=∠E【分析】根據兩邊及其夾角法:兩組對應邊的比相等且夾角對應相等的兩個三角形相似可得添加條件:∠B=∠E.【詳解】添加條件:∠B=∠E;
∵,∠B=∠E,
∴△ABC∽△AED,
故答案為:∠B=∠E(答案不唯一).【點睛】此題考查相似三角形的判定,解題關鍵是掌握相似三角形的判定定理.15、.【分析】根據反比例函數的性質,當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大,即可求解.【詳解】解:因為反比例函數為常數)的圖象在第二、四象限.所以,.故答案為:.【點睛】本題考查的知識點是反比例函數的性質,(1)反比例函數y=xk(k≠0)的圖象是雙曲線;
(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減小;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.注意:反比例函數的圖象與坐標軸沒有交點.16、80π【分析】首先根據勾股定理求得圓錐的底面半徑,從而得到底面周長,然后利用扇形的面積公式即可求解.【詳解】解:圓錐的底面半徑是:=8,圓錐的底面周長是:2×8π=16π,
則×16π×10=80π.故答案為:80π.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.17、-2【解析】由A,B是OA的中點,點B的坐標,把B的坐標代入關系式可求k的值.【詳解】∵A(-4,2),O(0,0),B是OA的中點,∴點B(-2,1),代入得:∴故答案為:-2【點睛】本題考查反比例函數圖象上點的坐標特征及線段中點坐標公式;根據中點坐標公式求出點B坐標,代入求k的值是本題的基本方法.18、1【分析】根據題意求出△ABC的周長,根據相似三角形的性質列式計算即可.【詳解】解:設△DEF的周長別為x,△ABC的三邊長分別為4、5、6,∴△ABC的周長=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的周長比等于相似比是解題的關鍵.三、解答題(共66分)19、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函數解析式,即可求解;
(1)連接AC與對稱軸的交點即為點P.求出直線AC的解析式即可解決問題.
(3)過點M作MN⊥x軸與點N,設點M(x,x1+x-1),則AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根據S四邊形ABCM=S△AOM+S△OCM+S△BOC構建二次函數,利用二次函數的性質即可解決問題.【詳解】解:(1)由y=0,得x1+x﹣1=0解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)連接AC與對稱軸的交點即為點P.設直線AC為y=kx+b,則,得k=﹣l,∴y=﹣x﹣1.對稱軸為x=,當x=時,y=-()﹣1=,∴P(,).(3)過點M作MN丄x軸與點N,設點M(x,x1+x﹣1),則OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四邊形ABCM=S△AOM+S△OCM+S△BOC=×1×(﹣x1﹣x+1)+×1(﹣x)+×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴當x=﹣1時,S四邊形ABCM的最大值為2.∴點M坐標為(﹣1,﹣1)時,S四邊形ABCM的最大值為2.【點睛】本題考查二次函數綜合題、待定系數法、兩點之間線段最短、最值問題等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用對稱解決在性質問題,學會構建二次函數解決最值問題.20、王浩同學能將手機放入卡槽DF內,理由見解析【分析】作AD⊥BC于D,根據正弦、余弦的定義分別求出AD和CD的長,求出DB的長,根據勾股定理即可得到AB的長,然后與17比較大小,得到答案.【詳解】解:王浩同學能將手機放入卡槽DF內,理由如下:作AD⊥BC于點D,∵∠C=50°,AC=20,∴AD=AC?sin50°≈20×0.8=16,CD=AC?cos50°≈20×0.6=12,∴DB=BC﹣CD=18﹣12=6,∴AB===,∴DF=AB=,∵17=<,∴王浩同學能將手機放入卡槽DF內.【點睛】本題考查的是解直角三角形的應用,掌握銳角三角函數的定義是解題的關鍵.21、錯誤,見解析【分析】根據二次函數的性質和小明的做法,可以判斷小明的做法是否正確,然后根據二次函數的性質即可解答本題.【詳解】解:小明的做法是錯誤的,正確的做法如下:∵二次函數y=2x2+4x+1=2(x+1)2+1,∴該函數圖象開口向上,該函數的對稱軸是直線x=﹣1,當x=﹣1時取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴當x=﹣2時取得最大值,此時y=1,當x=﹣1時取得最小值,最小值是y=1,由上可得,當﹣2≤x≤﹣1時,函數y的最小值是1,最大值是1.【點睛】本題考查二次函數的性質,關鍵在于熟記性質.22、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定與性質得出,進而得出答案;(2)根據銳角三角函數的定義列出,然后代入求值即可.【詳解】解:則即解得:答:該塔的高度為55m.在中答:該塔的高度為【點睛】本題考查相似三角形的判定和性質及解直角三角形的應用,熟練掌握相似三角形對應邊的比相等和角的正切值的求法是本題的解題關鍵.23、(1);(2)見解析.【分析】(1)根據頂點公式求出D坐標(利用a,b,c表示),得到OC,DH(利用a,b,c表示)值,因為S△ABD:S△ACB=9:16,所以得到DH:OC=9:16,得到c=4a,利用交點式得出A,B即可.(2)由題意可以得到,求出DH,EH(利用a表示),因為△DBH與△BEH相似,得到,即可求出a(注意舍棄正值),得到解析式.【詳解】解:(1)∴∵C(0,c)∴OC=-c,DH=∵S△ABD:S△ACB=9∶16∴∴∴∴(2)①∵EH∥OC∴△AEH∽△ACO∴∴∴∵∵△DBH與△BEH相似∴∠BDH=∠EBH,又∵∠BHD=∠BHE=90°∴△DBH∽△BEH∴∴∴(舍去正值)∴【點睛】此題主要考查了二次函數與相似三角形等知識,熟練運用待定系數法、相似三角形是解題的關鍵.24、(1)R-d;(2)BD=ID,理由見解析;(3)見解析;(4).【解析】(1)直接觀察可得;(2)由三角形內心的性質可得∠BAD=∠CAD,∠CBI=∠ABI,由圓周角定理可得∠DBC=∠CAD,再根據三角形外角的性質即可求得∠BID=∠DBI,繼而可證得BD=ID;(3)應用(1)(2)結論即可;(4)直接代入結論進行計算即可.【詳解】(1)∵O、I、N三點共線,∴OI+IN=ON,∴IN=ON﹣OI=R﹣d,故答案為:R﹣d;(2)BD=ID,理由如下:∵點I是△ABC的內心,∴∠BAD=∠CAD,∠CBI=∠ABI,∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI,∴∠BID=∠DBI,∴BD=ID;(3)由(2)知:BD=ID,又,,∴DE·IF=IM·IN,∴,∴∴;(4)由(3)知:,把R=5,r=2代入得:,∵d>0,∴,故答案為:.【點睛】本題是圓綜合題,主要考查了三角形外接圓、外心和內切圓、內心,圓周角性質,角平分線定義,三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 叉車資產轉讓與維護保養合同
- 成都金融服務外包企業股權收購與業務拓展合同
- 財產保全擔保合同(知識產權許可糾紛執行擔保)
- 傳統制茶工藝傳承與人才培養合同
- 租賃鏟車合同(4篇)
- 浙江中醫藥大學金華研究院招聘考試真題2024
- 聯合促銷活動方案(27篇)
- 加油站操作員中級工復習試題
- 氣瓶復習試題含答案
- 大學生出納頂崗實習總結(4篇)
- 一起農村中學生意外溺水身亡心理危機干預實例 論文
- 遺傳學(中國農業大學)智慧樹知到答案章節測試2023年
- 高三數學(人教B版)知識點匯總
- GB/T 5905-2011起重機試驗規范和程序
- GB/T 1480-2012金屬粉末干篩分法測定粒度
- 華南理工大學自主招生綜合素質評價面試及試題指導
- QTZ80(6013)塔吊基礎天然基礎計算書施工方案
- 初一英語競賽課件
- 場地平整土石方工程施工方案
- 護理科研課題申請書
- 開工預付款支付申請表
評論
0/150
提交評論